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Chapter 3

Multiple Linear Regression

The general purpose of multiple linear regression is to seek for the linear re-
lationship between a dependent variable and several independent variables.
Multiple regression allows researchers to examine the effect of more than
one independent variables on response at the same time. For some research
questions, regression can be used to examine how much a particular set of
independent variables can explain sufficiently the outcome. In other cases,
multiple regression is used to examine the effect of outcome while account-
ing for more than one factor that could influence the outcome. In this
chapter we discuss multiple linear regression. To facilitate the discussion of
the theory of the multiple regression model we start with a brief introduc-
tion of the linear space and the projection in the linear space. Then we will
introduce multiple linear model in matrix form. All subsequent discussions
of multiple regression will be based on its matrix form.

3.1 Vector Space and Projection

First we briefly discuss the vector space, subspace, projection, and
quadratic form of multivariate normal variable, which are useful in the
discussions of the subsequent sections of this chapter.

3.1.1 Vector Space

A vector is a geometric object which has both magnitude and direction.
A vector is frequently represented by a line segment connecting the initial
point A with the terminal point B and denoted by

−−→
AB. The magnitude

of the vector
−−→
AB is the length of the segment and the direction of this

vector characterizes the displacement of the point B relative to the point

41
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A. Vectors can be added, subtracted, multiplied by a number, and flipped
around (multiplying by number −1) so that the direction is reversed. These
operations obey the familiar algebraic laws: commutativity, associativity,
and distributivity. The sum of two vectors with the same initial point
can be found geometrically using the parallelogram law. Multiplication
by a positive number, commonly called a scalar in this context, amounts
to changing the magnitude of vector, that is, stretching or compressing it
while keeping its direction; multiplication by −1 preserves the magnitude
of the vector but reverses its direction. Cartesian coordinates provide a
systematic way of describing vectors and operations on them.

A vector space is a set of vectors that is closed under finite vector ad-
dition and scalar multiplication. The basic example is n-dimensional Eu-
clidean space, where every element is represented by a list of real numbers,
such as

x
′
= (x1, x2, · · · , xn).

Scalars are real numbers, addition is componentwise, and scalar multiplica-
tion is multiplication on each term separately. Suppose V is closed under
vector addition on R

n: if u, v ∈ V , then u + v ∈ V . V is also closed un-
der scalar multiplication: if a ∈ R

1, v ∈ V , then av ∈ V . Then V is a
vector space (on R

n). We will focus our discussion only on vector space
on n-dimensional Euclidean space. For example, for any positive integer n,
the space of all n-tuples of elements of real line R

1 forms an n-dimensional
real vector space sometimes called real coordinate space and denoted by
R

n. An element in R
n can be written as

x
′
= (x1, x2, · · · , xn),

where each xi is an element of R
1. The addition on R

n is defined by

x + y = (x1 + y1, x2 + y2, · · · , xn + yn),

and the scalar multiplication on R
n is defined by

a x = (ax1, ax2, · · · , axn).

When a = −1 the vector ax has the same length as x but with a geomet-
rically reversed direction.

It was F. Hausdorff who first proved that every vector space has a basis.
A basis makes it possible to express every vector of the space as a unique
tuple of the field elements, although caution must be exercised when a
vector space does not have a finite basis. In linear algebra, a basis is a
set of vectors that, in a linear combination, can represent every vector in a
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given vector space, and such that no element of the set can be represented
as a linear combination of the others. In other words, a basis is a linearly
independent spanning set. The following is an example of basis of Rn:

e
′
1 = (1, 0, 0, · · · , 0)1×n

e
′
2 = (0, 1, 0, · · · , 0)1×n

e
′
3 = (0, 0, 1, · · · , 0)1×n

...

e
′
n = (0, 0, 0, · · · , 1)1×n.

Actually, the above vectors consist of the standard orthogonal basis of the
vector space Rn. Any vector x

′
= (x1, x2, · · · , xn) in the Rn can be a linear

combination of e1, e2, · · · ,en. In fact,

x = x1e1 + x2e2 + x3e3 + · · ·+ xnen.

This representation is unique. i.e., if there is another representation such
that

x = x∗1e1 + x∗2e2 + x∗3e3 + · · ·+ x∗nen,

then

(x1 − x∗1)e1 + (x2 − x∗2)e2 + · · ·+ (xn − x∗n)en

= (x1 − x∗1, x2 − x∗2, · · · , x2 − x∗2) = (0, 0, · · · , 0).

Therefore, we have xi = x∗i for all i = 1, 2, · · · , n.
Given a vector space V , a nonempty subset W of V that is closed

under addition and scalar multiplication is called a subspace of V . The
intersection of all subspaces containing a given set of vectors is called its
span. If no vector can be removed without changing the span, the vectors
in this set is said to be linearly independent. A linearly independent set
whose span is V is called a basis for V . A vector span by two vectors v and
w can be defined as: x : x = av + bw, for all (a, b) ∈ R2. Note that v and
w may not be necessarily independent. If a vector space S is spanned by a
set of independent vectors v1, v2, · · · , vp, i.e., S is the set of vectors

{x : x = a1 + v1 + a2v2 + · · ·+ apvp, for all (a1, a2, · · · , ap) ∈ Rp},
then the dimension of S is p. Vectors v1, v2, · · · , vp are the basis of the
vector space S. The dimension of a vector space S is the largest number of
a set of independent vectors in S. If the dimension of a linear space S is p

we write Dim(S) = p.
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3.1.2 Linearly Independent Vectors

If there exist a finite number of distinct vectors v1, v2, · · · , vn in vector
space V and scalars a1, a2, · · · , an, not all zero, such that

a1v1 + a2v2 + a3v3 + · · ·+ anvn = 0,

then the vectors v1, v2, · · · , vn are said to be linearly dependent. If
v1, v2, · · · , vn are dependent then out of these n vectors there is at least
one vector that can be expressed as a linear combination of other vectors.
Note that the zero on the right is the zero vector, not the number zero.
If no such scalars exist, then the vectors v1, v2, · · · , vn are said to be lin-
early independent. This condition can be reformulated as follows: whenever
a1, a2, · · · , an are scalars such that

a1v1 + a2v2 + a3v3 + · · ·+ anvn = 0,

we have ai = 0 for i = 1, 2, · · · , n, then v1, v2, · · · , vn are linearly indepen-
dent.

A basis of a vector space V is defined as a subset of vectors in V that
are linearly independent and these vectors span space V . Consequently,
if (v1, v2, · · · , vn) is a list of vectors in V , then these vectors form a basis
if and only if every vector x ∈ V can be uniquely expressed by a linear
combination of v1, v2, · · · , vp. i.e.,

x = a1v1 + a2v2 + · · ·+ anvn, for any x ∈ V.

The number of basis vectors in V is called the dimension of linear space
V. Note that a vector space can have more than one basis, but the number
of vectors which form a basis of the vector space V is always fixed. i.e.,
the dimension of vector space V is fixed but there will be more than one
basis. In fact, if the dimension of vector space V is n, then any n linearly
independent vectors in V form its basis.

3.1.3 Dot Product and Projection

If x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) are two vectors in a vector
Euclidean space Rn. The dot product of two vectors x and y is defined as

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Two vectors are said to be orthogonal if their dot product is 0. If θ is the
angle between two vectors (x1, x2, · · · , xn) and (y1, y2, · · · , yn), the cosine
of the angle between the two vectors is defined as

cos(θ) =
x · y
|x||y| =

x1y1 + x2y2 + · · ·+ xnyn√
x2

1 + x2
2 + · · ·+ x2

n

√
y2
1 + y2

2 + · · ·+ y2
n

(3.1)
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Two orthogonal vectors meet at 90◦; i.e., they are perpendicular. One
important application of the dot product is projection. The projection of
a vector y onto another vector x forms a new vector that has the same
direction as the vector x and the length |y| cos(θ), where |y| denotes the
length of vector y and θ is the angle between two vectors x and y. We
write this projection as Pxy. The projection vector can be expressed as

Pxy = |y| cos(θ)
x

|x| = |y| x · y
|x||y|

x

|x|
=

x1y1 + x2y2 + · · ·+ xnyn

x2
1 + x2

2 + · · ·+ x2
n

x = λx, (3.2)

where λ is a scalar and

λ =
x1y1 + x2y2 + · · ·+ xnyn

x2
1 + x2

2 + · · ·+ x2
n

=
x · y
xx

.

Thus, the projection of y onto vector x is a vector x multiplying a scalar
λ where λ is the cos(θ) and θ is the angle between two vectors x and y.

If x and y are two vectors in Rn. Consider the difference vector between
the vector e, e = λx−y, and λ = x · y/x · x. The vector e is perpendicular
to the vector x when λ = (x · y)/(x · x). To see this we simply calculate
the dot product of e and x:

e · x = (λx− y) · x = λx · x− x · y =
(x · y

x · x
)
x · x− x · y = 0

Thus, the angle between e and x is indeed 90o, i.e., they are perpendicular
to each other. In addition, since e is perpendicular to x, it is the vector
with the shortest distance among all the vectors starting from the end of y

and ending at any point on x.
If a vector space has a basis and the length of the basis vectors is a

unity then this basis is an orthonormal basis. Any basis divided by its
length forms an orthonormal basis. If S is a p-dimensional subspace of a
vector space V , then it is possible to project vectors in V onto S. If the
subspace S has an orthonormal basis (w1, w2, · · · , wp), for any vector y in
V , the projection of y onto the subspace S is

PSy =
p∑

i=1

(y · wi)wi. (3.3)

Let vector spaces S and T be the two subspaces of a vector space V and
union S ∪ T = V . If for any vector x ∈ S and any vector y ∈ T , the
dot product x · y = 0, then the two vector spaces S and T are said to be
orthogonal. Or we can say that T is the orthogonal space of S, denoted by
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T = S⊥. Thus, for a vector space V , if S is a vector subspace in V , then
V = S ∪S⊥. Any vector y in V can be written uniquely as yS +y⊥S , where
yS ∈ S and y⊥S is in S⊥, the orthogonal subspace of S.

A projection of a vector onto a linear space S is actually a linear trans-
formation of the vector and can be represented by a projection matrix times
the vector. A projection matrix P is an n×n square matrix that gives the
projection from Rn onto subspace S. The columns of P are the projections
of the standard basis vectors, and S is the image of P . For the projection
matrix we have the following theorems.

Theorem 3.1. A square matrix P is a projection matrix if and only if it
is idempotent, i.e., P 2 = P .

Theorem 3.2. Let U = (u1, u2, · · · , uk) be an orthonormal basis for a
subspace W of linear space V . The matrix UU

′
is a projection matrix

of V onto W . i.e., for any vector v ∈ V the projection of v onto W is
ProjW v = UU

′
v.

The matrix UU
′
is called the projection matrix for the subspace W. It

does not depend on the choice of orthonormal basis. If we do not start with
an orthonormal basis of W, we can still construct the projection matrix.
This can be summarized in the following theorem.

Theorem 3.3. Let A = (a1, a2, · · · , ak) be any basis for a subspace W of
V . The matrix A(A

′
A)−1A

′
is a projection matrix of V onto W . i.e., for

any vector v ∈ V the projection of v onto W is

ProjW v = A(A
′
A)−1A

′
v. (3.4)

To understand the above three theorems the following lemma is impor-
tant.

Lemma 3.1. Suppose that A is an n×k matrix whose columns are linearly
independent. Then AA

′
is invertible.

Proof. Consider the transformation A: Rk → Rk determined by A. Since
the columns of A are linearly independent, this transformation is one-to-
one. In addition, the null space of A

′
is orthogonal to the column space of

A. Thus, A
′

is one-to-one on the column space of A, and as a result, A
′
A

is one-to-one transformation Rk → Rk. By invertible matrix theorem, A
′
A

is invertible. ¤
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Let’s now derive the projection matrix for the column space of A. Note
that any element of the column space of A is a linear combination of the
columns of A, i.e., x1a1 + x2a2 + · · ·+ xkak. If we write

x =




x1

x2

...
xk


 ,

then we have

x1a1 + x2a2 + · · ·+ xkak = Ax.

Now, for any vector v ∈ Rn, we denote the projection of v onto W by xp.

ProjW v = Axp.

The projection matrix can be found by calculating xp. The projection of
vector v onto W is characterized by the fact that v−ProjW v is orthogonal
to any vector w in W . Thus we have

w · (v − ProjW v) = 0

for all w in W . Since w = Ax for some x, we have

Ax · (v −Axp) = 0

for all x in Rn. Write this dot product in terms of matrices yields

(Ax)
′
(v −Axp) = 0

which is equivalent to

(x
′
A
′
)(v −Axp) = 0

Converting back to dot products we have

x ·A′
(v −Axp) = 0

We get

A
′
v = A

′
Axp

Since A
′
A is invertible we have

(A
′
A)−1A

′
v = xp

Since Axp is the desired projection, we have

A(A
′
A)−1A

′
v = Axp = ProjW v
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Therefore, we conclude that the projection matrix for W is A(A
′
A)−1A

′
.

Projection matrix is very useful in the subsequent discussions of linear
regression model Y = Xβ + ε. A squared matrix, P = X(XX

′
)−1X

′
, is

constructed using the design matrix. It can be easily verified that P is an
idempotent matrix:

P 2 = X(XX
′
)−1X

′
X(XX

′
)−1X

′
= P.

Thus, P = X(XX
′
)−1X

′
is a projection matrix. In addition, if we define

a matrix as I −P = I −X(XX
′
)−1X

′
. It is easy to see that I −P is also

idempotent. In fact,

(I − P )2 = I − 2P + P 2 = I − 2P + P = I − P.

Therefore, I − P = I − X(XX
′
)−1X

′
is a projection matrix. In the

subsequent sections we will see how these projection matrices are used to
obtain the best linear unbiased estimator (BLUE) for the linear regression
model and how they are used in regression model diagnosis.

3.2 Matrix Form of Multiple Linear Regression

In many scientific research it is often needed to determine the relation-
ship between a response (or dependent) variable (y) and more than one
regressors (or independent variables) (x1, x2, · · · , xk). A general form of a
multiple linear regression model is given by

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (3.5)

where ε is the random error. Here, regressors x1, x2, · · · , xk may contain
regressors and their higher order terms. In the classical setting, it is as-
sumed that the error term ε has the normal distribution with a mean 0 and
a constant variance σ2.

The first impression of the multiple regression may be a response plane.
However, some regressors may be higher order terms of other regressors,
or may even be functions of regressors as long as these functions do not
contain unknown parameters. Thus, multiple regression model can be a
response surface of versatile shapes. Readers may already realize the dif-
ference between a linear model and a nonlinear model.

Definition 3.1. A linear model is defined as a model that is linear in
regression parameters, i.e., linear in βi’s.
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The following are examples of linear regression models in which the response
variable y is a linear function of regression parameters:

y = β0 + β1x1 + β2x2 + β3x3 + ε,

y = β0 + β1x1 + β2x
2
1 + β3x2 + ε,

y = β0 + β1x1 + β2x
2
1 + β3x2 + β4x1x2 + ε,

y = β0 + β1x1 + β2ln(x1) + β2ln(x2) + ε,

y = β0 + β21(x1>5) + β21(x2>10) + β3x3 + ε.

In the last model 1(x1>5) is an indicator function taking value 1 if x1 > 5
and 0 otherwise. Examples of non-linear regression model may be given by

y = β0 + β1x1 + β2x
γ
2 + ε,

y =
1

λ + exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)
+ ε,

where the response variable cannot be expressed as a linear function of
regression parameters.

3.3 Quadratic Form of Random Variables

Definition 3.2. Let y
′
= (y1, y2, · · · , yn) be n real variables and aij be n×n

real numbers, where i, j = 1, 2, · · · , n. A quadratic form of y1, y2, · · · , yn is
defined as

f(y1, y2, · · · , yn) =
n∑

i,j=1

aijyiyj .

This quadratic form can be written in the matrix form: y
′
Ay, where A is

an n × n matrix A = (aij)n×n. Quadratic form plays an important role
in the discussions of linear regression model. In the classical setting the
parameters of a linear regression model are estimated via minimizing the
sum of squared residuals:

b = (b0, b1, · · · , bk)

= arg min(β0,β1,··· ,βk)

n∑
i=1

[
yi − (β0 + β1x1i + β2x2i + · · ·+ βkxki)

]2
.

This squared residual is actually a quadratic form. Thus, it is important
to discuss some general properties of this quadratic form that will be used
in the subsequent discussions.



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

50 Linear Regression Analysis: Theory and Computing

3.4 Idempotent Matrices

In this section we discuss properties of the idempotent matrix and its ap-
plications in the linear regression. First we define the idempotent matrix.

Definition 3.3. An n× n symmetric matrix A is idempotent if A2 = A.

Let α = (α1, α2, · · · , αk) be a k-dimensional vector and A is a k × k

matrix. α
′
Aα is a quadratic form of α1, α2, · · · , αk. When A is an idempo-

tent matrix, the corresponding quadratic form has its particular properties.
The quadratic form with idempotent matrices are used extensively in linear
regression analysis. We now discuss the properties of idempotent matrix.

Theorem 3.4. Let An×n be an idempotent matrix of rank p, then the eigen-
values of A are either 1 or 0.

Proof. Let λi and vi be the eigenvalue and the corresponding normalized
eigenvector of the matrix A, respectively. We then have Avi = λivi, and
v
′
iAvi = λiv

′
ivi = λi. On the other hand, since A2 = A, we can write

λi = v
′
iAvi = v

′
iA

2vi = v
′
iA

′
Avi = (Avi)

′
Avi = (λivi)

′
(λivi) = λ2

i .

Hence, we have λi(λi − 1) = 0, which yields either λi = 1 or λi = 0. This
completes the proof. ¤

It is easy to know that p eigenvalues of A are 1 and n− p eigenvalues of A

are zero. Therefore, the rank of an idempotent matrix A is the sum of its
non-zero eigenvalues.

Definition 3.4. Let A = (ai,j)n×n be an n×n matrix, trace of A is defined
as the sum of the orthogonal elements. i.e.,

tr(A) = a11 + a22 + · · ·+ ann.

If A is a symmetric matrix then the sum of all squared elements of A can
be expressed by tr(A2). i.e.,

∑
i,j a2

ij = tr(A2). It is easy to verify that
tr(AB) = tr(BA) for any two n × n matrices A and B. The following
theorem gives the relationship between the rank of matrix A and and trace
of A when A is an idempotent matrix.

Theorem 3.5. If A is an idempotent matrix then tr(A) = rank(A) = p.

Proof. If the rank of an n × n idempotent matrix A is p then A has p

eigenvalues of 1 and n− p eigenvalues of 0. Thus, we can write rank(A) =
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∑n
i=1 λi = p. Since A2 = A, the eigenvalues of the idempotent matrix A

is either 1 or 0. From matrix theory there is an orthogonal matrix V such
that

V
′
AV =

(
Ip 0
0 0

)
.

Therefore, we have

tr(V
′
AV ) = tr(V V

′
A) = tr(A) = tr

(
Ip 0
0 0

)
= p = rank(A).

Here we use the simple fact: tr(AB) = tr(BA) for any matrices An×n and
Bn×n. ¤

A quadratic form of a random vector y
′
= (y1, y2, · · · , yn) can be written

in a matrix form y
′
Ay, where A is an n × n matrix. It is of interest to

find the expectation and variance of y
′
Ay. The following theorem gives

the expected value of y
′
Ay when the components of y are independent.

Theorem 3.6. Let y
′

= (y1, y2, · · · , yn) be an n × 1 random vector with
mean µ

′
= (µ1, µ2, · · · , µn) and variance σ2 for each component. Further,

it is assumed that y1, y2, · · · , yn are independent. Let A be an n×n matrix,
y
′
Ay is a quadratic form of random variables. The expectation of this

quadratic form is given by

E(y
′
Ay) = σ2tr(A) + µ

′
Aµ. (3.6)

Proof. First we observe that

y
′
Ay = (y − µ)

′
A(y − µ) + 2µ

′
A(y − µ) + µ

′
Aµ.

We can write

E(y
′
Ay) = E[(y − µ)

′
A(y − µ)] + 2E[µ

′
A(y − µ)] + µ

′
Aµ

= E
[ n∑

i,j=1

aij(yi − µi)(yj − µj)
]

+ 2µ
′
AE(y − µ) + µ

′
Aµ

=
n∑

i=1

aiiE(yi − µi)2 + µ
′
Aµ = σ2tr(A) + µ

′
Aµ.

¤
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We now discuss the variance of the quadratic form y
′
Ay.

Theorem 3.7. Let y be an n × 1 random vector with mean µ
′

=
(µ1, µ2, · · · , µn) and variance σ2 for each component. It is assumed that
y1, y2, · · · , yn are independent. Let A be an n × n symmetric matrix,
E(yi − µi)4 = µ

(4)
i , E(yi − µi)3 = µ

(3)
i , and a

′
= (a11, a22, · · · , ann). The

variance of the quadratic form Y
′
AY is given by

Var(y
′
Ay) = (µ(4) − 3σ2)a′a + σ4(2tr(A2) + [tr(A)]2)

+4σ2µ
′
A2µ + 4µ(3)a

′
Aµ. (3.7)

Proof. Let Z = y − µ, A = (A1, A2, · · · , An), and b = (b1, b2, · · · , bn) =
µ
′
(A1, A2, · · · , An) = µ

′
A we can write

y
′
Ay = (y

′ − µ)A(y − µ) + 2µ
′
A(y − µ) + µ

′
Aµ

= Z
′
AZ + 2bZ + µ

′
Aµ.

Thus

Var(y
′
Ay) = Var(Z

′
AZ) + 4V ar(bZ) + 4Cov(Z

′
AZ, bZ).

We then calculate each term separately:

(Z
′
AZ)2 =

∑

ij

aijalmZiZjZlZm

E(Z
′
AZ)2 =

∑

i j l m

aijalmE(ZiZjZlZm)

Note that

E(ZiZjZlZm) =





µ(4), if i = j = k = l;
σ4, if i = j, l = k or i = l, j = k, or i = k, j = l ;
0, else.

We have

E(Z
′
AZ)2 =

∑

i j l m

aijalmE(ZiZjZlZm)

= µ(4)
n∑

i=1

a2
ii + σ4

( ∑

i6=k

aiiakk +
∑

i 6=j

a2
ij +

∑

i 6=j

aijaji

)
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Since A is symmetric, aij = aji, we have
∑

i 6=j

a2
ij +

∑

i 6=j

aijaji

= 2
∑

i 6=j

a2
ij = 2

∑

i,j

a2
ij − 2

∑

i=j

a2
ij

= 2tr(A2)− 2
n∑

i=1

a2
ii

= 2tr(A2)− 2a
′
a

and ∑

i 6=k

aiiakk =
∑

i,k

aiiakk −
∑

i=k

aiiakk

= [tr(A)]2 −
n∑

i=1

a2
ii = [tr(A)]2 − a

′
a.

So we can write

E(Z
′
AZ)2 = (µ(4) − 3σ4)a

′
a + σ4(2tr(A2) + [tr(A)]2). (3.8)

For Var(bZ) we have

Var(bZ) = bVar(Z)b
′
= bb

′
σ2 = (µ

′
A)(µ

′
A)

′
σ2 = µ

′
A2µσ2. (3.9)

To calculate Cov(Z
′
AZ, bZ), note that EZ = 0, we have

Cov(Z
′
AZ, bZ)

= Cov
(∑

i,j

aijZiZj ,
∑

k

bkZk

)

=
∑

i,j,k

aijbkCov(ZiZj , Zk)

=
∑

i,j,k

aijbkE[(ZiZj − E(ZiZj))Zk]

=
∑

i,j,k

aijbk[E(ZiZjZk)− E(ZiZj)EZk]

=
∑

i,j,k

aijbk[E(ZiZjZk)] (since EZk = 0).

It is easy to know that

E(ZiZjZk) =
{

µ(3), if i = j = k;
0, else.
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Thus,

Cov(Z
′
AZ, bZ) =

n∑

i=1

aiibiµ
(3)

=
n∑

i=1

aiiµ
′
Aiµ

(3) =
n∑

i=1

aiiA
′
iµ µ(3) = a

′
Aµ µ(3). (3.10)

Combining the results above completes the proof. ¤

3.5 Multivariate Normal Distribution

A random variable Y is said to follow the normal distribution N(µ, σ2) if
and only if the probability density function of Y is

f(y) =
1√
2πσ

exp
{− (y − µ)2

σ2

}
for −∞ < y < ∞. (3.11)

The cumulative distribution of Y is defined as

F (y) = P (Y ≤ y) =
1√
2πσ

∫ y

−∞
exp

{− (y − µ)2

σ2

}
dy. (3.12)

The moment generating function for the normal random variable Y ∼
N(µ, σ) is

M(t) = E(etY ) = exp(tµ +
1
2
t2σ2). (3.13)

The multivariate normal distribution is an extension of the univariate nor-
mal distribution. A random vector y

′
= (y1, y2, · · · , yp) is said to follow

the multivariate normal distribution if and only if its probability density
function has the following form

f(y1, y2, · · · , yp) (3.14)

=
1

(2π)p/2|Σ|1/2
exp

{
− 1

2
(y − µ)

′
Σ−1(y − µ)

}
,

where Σ = (σij)p×p is the covariance matrix of y and the inverse matrix
Σ−1 exists. µ

′
= (µ1, µ2, · · · , µp) is the mean vector of y.

When Σ is a diagonal matrix Σ = diag(σ2
1 , σ2

2 , · · · , σ2
p), or σij = 0 for all

i 6= j, then y1, y2, · · · , yp are not correlated since it is easy to know that the
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density function of y can be written as a product of p univariate normal
density function:

1
(2π)p/2|Σ|1/2

exp
{
−1

2
(y−µ)

′
Σ−1(y−µ)

}
=

p∏

i=1

1√
2πσi

exp
{− (yi − µi)2

σ2
i

}

Since density function of multivariate normal vector y is a product of den-
sity functions of y1, y2, · · · , yp, they are jointly independent. For multivari-
ate normal variables, the uncorrelated normal random variables are jointly
independent. We summarize this into the following theorem:

Theorem 3.8. If random vector y
′
= (y1, y2, · · · , yp) follows a multivari-

ate normal distribution N(µ, Σ) and the covariance matrix Σ = (σij)p×p

is a diagonal matrix diag(σ11, σ22, · · · , σpp), then y1, y2, · · · , yp are jointly
independent.

We now introduce the central χ2 distribution. Let y1, y2, · · · , yp be p inde-
pendent standard normal random variables, i.e., E(yi) = 0 and Var(yi) = 1.
The special quadratic form Z =

∑p
i=1 y2

i has the chi-square distribution
with p degrees of freedom and non-centrality parameter λ = 0. In addition,
the random variable Z has the density function

f(z) =
1

Γ(p/2)2p/2
z(p−2)/2e−z/2 for 0 < z < ∞. (3.15)

The moment generating function for Z is given by

M(t) = E(etZ) = (1− 2t)−n/2 for t <
1
2
. (3.16)

Using this moment generating function it is easy to find E(Z) = p and
Var(Z) = 2p. In addition, the following results are obtained through direct
calculations:
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E(Z2) = p (p + 2),

E(
√

Z ) =
√

2 Γ[(p + 1)/2]
Γ(p/2)

,

E
( 1

Z

)
=

1
p− 2

,

E
( 1

Z2

)
=

1
(n− 2)(n− 4)

,

E
( 1√

Z

)
=

Γ[(p− 1/2)]√
2 Γ(p/2)

.

3.6 Quadratic Form of the Multivariate Normal Variables

The distribution of the quadratic form y
′
Ay when y follows the multivari-

ate normal distribution plays a significant role in the discussion of linear
regression methods. We should further discuss some theorems about the
distribution of the quadratic form based upon the mean and covariance
matrix of a normal vector y, as well as the matrix A.

Theorem 3.9. Let y be an n× 1 normal vector and y ∼ N(0, I). Let A be
an idempotent matrix of rank p. i.e., A2 = A. The quadratic form y

′
Ay

has the chi-square distribution with p degrees of freedom.

Proof. Since A is an idempotent matrix of rank p. The eigenvalues of A

are 1’s and 0’s. Moreover, there is an orthogonal matrix V such that

V AV
′
=

(
Ip 0
0 0

)
.

Now, define a new vector z = V y and z is a multivariate normal vector.
E(z) = V E(y) = 0 and Cov(z) = Cov(V y) = V Cov(y)V

′
= V IpV

′
= Ip.

Thus, z ∼ N(0, Ip). Notice that V is an orthogonal matrix and

y
′
Ay = (V

′
z)
′
AV

′
z = z

′
V AV

′
z = z

′
Ipz =

p∑

i=1

z2
i .

By the definition of the chi-square random variable,
∑p

i=1 z2
i has the chi-

square distribution with p degrees of freedom. ¤
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The above theorem is for the quadratic form of a normal vector y when
Ey = 0. This condition is not completely necessary. However, if this
condition is removed, i.e., if E(y) = µ 6= 0 the quadratic form of y

′
Ay

still follows the chi-square distribution but with a non-centrality parameter

λ =
1
2
µ
′
Aµ. We state the theorem and the proofs of the theorem should

follow the same lines as the proofs of the theorem for the case of µ = 0.

Theorem 3.10. Let y be an n × 1 normal vector and y ∼ N(µ, I). Let
A be an idempotent matrix of rank p. The quadratic form y

′
Ay has the

chi-square distribution with degrees of freedom p and the non-centrality pa-

rameter λ =
1
2
µ
′
Aµ.

We now discuss more general situation where the normal vector y follows
a multivariate normal distribution with mean µ and covariance matrix Σ.

Theorem 3.11. Let y be a multivariate normal vector with mean µ and co-
variance matrix Σ. If AΣ is an idempotent matrix of rank p, The quadratic
form of y

′
Ay follows a chi-square distribution with degrees of freedom p

and non-centrality parameter λ =
1
2
µ
′
Aµ.

Proof. First, for covariance matrix Σ there exists an orthogonal matrix
Γ such that Σ = ΓΓ

′
. Define Z = Γ−1(y − µ) and Z is a normal vector

with E(Z) = 0 and

Cov(Z) = Cov(Γ−1(y − µ)) = Γ−1Cov(y)Γ
′−1 = Γ−1ΣΓ

′−1

= Γ−1(ΓΓ
′
)Γ

′−1 = Ip.

i.e., Z ∼ N(0, I). Moreover, since y = ΓZ + µ we have

y
′
Ay = [ΓZ + µ)]

′
A(ΓZ + µ) = (Z

′
+ Γ

′−1µ)
′
(Γ

′
AΓ)(Z + Γ

′−1µ) = V
′
BV,

where V = Z
′
+ Γ

′−1µ ∼ N(Γ
′−1µ, Ip) and B = Γ

′
AΓ. We now need to

show that B is an idempotent matrix. In fact,

B2 = (Γ
′
AΓ)(Γ

′
AΓ) = Γ

′
(AΓΓ

′
A)Γ

Since AΣ is idempotent we can write

AΣ = AΓΓ
′
= AΣAΣ = (AΓΓ

′
A)ΓΓ

′
= (AΓΓ

′
A)Σ.

Note that Σ is non-singular we have
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A = AΓΓ
′
A.

Thus,

B2 = Γ
′
(AΓΓ

′
A)Γ = Γ

′
AΓ = B.

i.e., B is an idempotent matrix. This concludes that V
′
BV is a chi-square

random variable with degrees of freedom p. To find the non-centrality
parameter we have

λ =
1
2
(Γ

′−1µ)
′
B(Γ

′−1µ)

=
1
2
µ
′
Γ
′−1(Γ

′
AΓ)Γ

′−1µ =
1
2
µ
′
Aµ.

This completes the proof. ¤

3.7 Least Squares Estimates of the Multiple Regression Pa-
rameters

The multiple linear regression model is typically stated in the following
form

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi,

where yi is the dependent variable, β0, β1, β2, · · · , βk are the regression
coefficients, and εi’s are the random errors assuming E(εi) = 0 and
Var(εi) = σ2 for i = 1, 2, · · · , n. In the classical regression setting the
error term is assumed to be normally distributed with a constant vari-
ance σ2. The regression coefficients are estimated using the least squares
principle. It should be noted that it is not necessary to assume that the
regression error term follows the normal distribution in order to find the
least squares estimation of the regression coefficients. It is rather easy to
show that under the assumption of normality of the error term, the least
squares estimation of the regression coefficients are exactly the same as the
maximum likelihood estimations (MLE) of the regression coefficients.

The multiple linear model can also be expressed in the matrix format

y = Xβ + ε,
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where

X =




x11 x12 · · · x1k

x21 x22 · · · x2k

· · ·
xn1 xn2 · · · xnk


 β =




β0

β1

β2

· · ·
βk−1




ε =




ε1

ε2

ε3

· · ·
εn




(3.17)

The matrix form of the multiple regression model allows us to discuss and
present many properties of the regression model more conveniently and
efficiently. As we will see later the simple linear regression is a special case
of the multiple linear regression and can be expressed in a matrix format.
The least squares estimation of β can be solved through the least squares
principle:

b = arg minβ [(y −Xβ)
′
(y −Xβ)],

where b
′

= (b0, b1, · · · bk−1)
′
, a k-dimensional vector of the estimations of

the regression coefficients.

Theorem 3.12. The least squares estimation of β for the multiple linear
regression model y = Xβ + ε is b = (X

′
X)−1X

′
y, assuming (X

′
X) is

a non-singular matrix. Note that this is equivalent to assuming that the
column vectors of X are independent.

Proof. To obtain the least squares estimation of β we need to minimize
the residual of sum squares by solving the following equation:

∂

∂b
[(y −Xb)

′
(y −Xb)] = 0,

or equivalently,

∂

∂b
[(y

′
y − 2y

′
Xb + b

′
X

′
Xb)] = 0.

By taking partial derivative with respect to each component of β we obtain
the following normal equation of the multiple linear regression model:

X
′
Xb = X

′
y.

Since X
′
X is non-singular it follows that b = (X

′
X)−1X

′
y. This com-

pletes the proof. ¤
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We now discuss statistical properties of the least squares estimation of the
regression coefficients. We first discuss the unbiasness of the least squares
estimation b.

Theorem 3.13. The estimator b = (X
′
X)−1X

′
y is an unbiased estimator

of β. In addition,

Var(b) = (X
′
X)−1σ2. (3.18)

Proof. We notice that

Eb = E((X
′
X)−1X

′
y) = (X

′
X)−1X

′
E(y) = (X

′
X)−1X

′
Xβ = β.

This completes the proof of the unbiasness of b. Now we further discuss
how to calculate the variance of b. The variance of the b can be computed
directly:

Var(b) = Var((X
′
X)−1X

′
y)

= (X
′
X)−1X

′
Var(b)((X

′
X)−1X

′
)
′

= (X
′
X)−1X

′
X(X

′
X)−1σ2 = (X

′
X)−1σ2. ¤

Another parameter in the classical linear regression is the variance σ2, a
quantity that is unobservable. Statistical inference on regression coefficients
and regression model diagnosis highly depend on the estimation of error
variance σ2. In order to estimate σ2, consider the residual sum of squares:

ete = (y −Xb)
′
(y −Xb) = y

′
[I −X(X

′
X)−1X

′
]y = y

′
Py.

This is actually a distance measure between observed y and fitted regression
value ŷ. Note that it is easy to verify that P = [I − X(X

′
X)−1X

′
] is

idempotent. i.e.,

P 2 = [I −X(X
′
X)−1X

′
][I −X(X

′
X)−1X

′
] = [I −X(X

′
X)−1X

′
] = P.

Therefore, the eigenvalues of P are either 1 or 0. Note that the matrix
X(X

′
X)−1X

′
is also idempotent. Thus, we have

rank(X(X
′
X)−1X

′
) = tr(X(X

′
X)−1X

′
)

= tr(X
′
X(X

′
X)−1) = tr(Ip) = p.
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Since tr(A−B) = tr(A)− tr(B) we have

rank(I −X(X
′
X)−1X

′
) = tr(I −X(X

′
X)−1X

′
)

= tr(In)− tr(X
′
X(X

′
X)−1) = n− p

The residual of sum squares in the multiple linear regression is e′e which
can be written as a quadratic form of the response vector y.

e′e = (y −Xb)
′
(y −Xb) = y

′
(I −X(X

′
X)−1X

′
)y.

Using the result of the mathematical expectation of the quadratic form we
have

E(e′e) = E
[
y
′
(I −X(X

′
X)−1X

′
)y

]

= (Xβ)
′
(I −X(X

′
X)−1X

′
)(Xβ) + σ2(n− p)

= (Xβ)
′
(Xβ −X(X

′
X)−1X

′
Xβ) + σ2(n− p) = σ2(n− p)

We summarize the discussions above into the following theorem:

Theorem 3.14. The unbiased estimator of the variance in the multiple
linear regression is given by

s2 =
e′e

n− p
=

y
′
(I −X(X

′
X)−1X

′
)y

n− p
=

1
n− p

n∑

i=1

(yi − ŷi)2. (3.19)

Let P = X(X
′
X)−1X

′
. The vector y can be partitioned into two vectors

(I − P )y = (I −X(X
′
X)−1X

′
)y and Py = X(X

′
X)−1X

′
)y. Assuming

the normality of regression error term (I − P )y is independent of Py. To
see this we simply calculate the covariance of (I − P )y and Py:

Cov
(
(I − P )y, Py

)

= (I − P )Cov(y)P = (I − P )Pσ2

= (I −X(X
′
X)−1X

′
)X(X

′
X)−1X

′
σ2

= [X(X
′
X)−1X

′ − (X(X
′
X)−1X

′
)X(X

′
X)−1X

′
]σ2

= (X(X
′
X)−1X

′ −X(X
′
X)−1X

′
)σ2 = 0

Since (I − P )y and Py are normal vectors, the zero covariance implies
that they are independent of each other. Thus, the quadratic functions
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y
′
(I − P )y and y

′
Py are independent as well. When P is idempotent,

the quadratic function of a normal vector y
′
Py follows the chi-square dis-

tribution with degrees of freedom p, where p = rank(P ). This property
can be used to construct the F test statistic that is commonly used in the
hypothesis testing problem for multiple linear regression.

The above calculations can be simplified if we introduce the following the-
orem for the two linear transformations of a multivariate normal variable
y.

Theorem 3.15. Let y ∼ N(µ, I) and A and B be two matrices. Two
normal vectors Ay and By are independent if and only if AB

′
= 0.

Proof. Recall that the independence of two normal vectors is equivalent
to zero covariance between them. We calculate the covariance of Ay and
By.

Cov(Ay, By) = ACov(y)B
′
= AB

′

Thus, the independence of two normal vectors Ay and By is equivalent to
AB

′
= 0. ¤

By using this theorem we can easily show that (I − P )y and Py are inde-
pendent. In fact, because P is idempotent, therefore, (I−P )P = P −P 2 =
P − P = 0. The result follows immediately.

3.8 Matrix Form of the Simple Linear Regression

The simple linear regression model is a special case of the multiple linear
regression and can be expressed in the matrix format. In particular,

X =




1 x1

1 x2

· · ·
1 xn


 , β =

(
β0

β1

)
, ε =




ε1

ε2

· · ·
εn


 .

The formula for calculating b in matrix format can be applied to the simple
linear regression.

X
′
X =

(
n

∑
xi∑

xi

∑
x2

i

)
.



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

Multiple Linear Regression 63

It is not difficult to solve for (X
′
X)−1 analytically. In fact, the inverse

matrix of X
′
X is given by

(X
′
X)−1 =

1
n

∑n
i=1 x2

i − (
∑n

i=1 xi)2

( ∑
x2

i −∑
xi

−∑
xi n

)

=
1

n
∑n

i=1(xi − x̄)2

( ∑
x2

i −∑
xi

−∑
xi n

)
.

The least squares estimation of the simple linear regression can be calcu-
lated based on its matrix form:

b = (X
′
X)−1X

′
y ==

1
n

∑n
i=1(xi − x̄)2

( ∑
x2

i −∑
xi

−∑
xi n

)(∑
yi∑
xiyi

)

=
1

n
∑n

i=1(xi − x̄)2

(∑
x2

i

∑
yi −

∑
xi

∑
xiyi

n
∑

xiyi −
∑

xi

∑
yi

)

=




∑
x2

i

∑
yi −

∑
xi

∑
xiyi∑n

i=1(xi − x̄)2

∑
(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2




.

Thus, we have

b0 =
∑

x2
i

∑
yi −

∑
xi

∑
xiyi∑n

i=1(xi − x̄)2
= ȳ − b1x̄

and

b1 =
∑

(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

.

The results are exactly identical to the results derived in Chapter 2. The
unbiasness of the b and the covariance of b can be shown for the simple
linear regression using its matrix form as well. We left this to the readers.



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

64 Linear Regression Analysis: Theory and Computing

3.9 Test for Full Model and Reduced Model

Before an appropriate linear regression model is chosen it is often unknown
how many variables should be included in the regression model. A linear
regression model with more variables may not always perform better than
the regression model with less variables when both models are compared
in terms of residual of sum squares. To compare two regression models in
terms of the independent variables included in the models we need to test if
the regression model with more independent variables performs statistically
better than the regression model with less independent variables. To this
end, we define the full regression model as:

y = X1β1 + X2β2 + ε, (3.20)

and the reduced regression model as:

y = X2β2 + ε. (3.21)

A full linear regression model is the model with more independent variables
and a reduced model is the model with a subset of the independent variables
in the full model. In other words, the reduced regression model is the model
nested in the full regression model. We would like to test the following
hypothesis

H0 : β1 = 0 versus H1 : β1 6= 0.

Under the null hypothesis H0, the error term of the regression model ε ∼
N(0, σ2In). Denote X = (X1, X2), where X1 is an n× p1 matrix, X2 is
an n×p2 matrix, and n is the total number of observations. A test statistic
needs to be constructed in order to compare the full regression model with
the reduced regression regression model. Consider the difference between
the SSE of the full model and the SSE of the reduced model:

SSEreduced = y
′
(I −X2(X

′
2X2)−1X

′
2)y

and

SSEfull = y
′
(I −X(X

′
X)−1X

′
)y,

SSEreduced − SSEfull = y
′(

X(X
′
X)−1X

′ −X2(X
′
2X2)−1X

′
2

)
y.

The matrices X(X
′
X)−1X

′
and X2(X

′
2X2)−1X

′
2 are idempotent.

In addition, it can be shown that the matrix
(
X(X

′
X)−1X

′ −
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X2(X
′
2X2)−1X

′
2

)
is also idempotent and the rank of this matrix is p1

which is the dimension of β1:

Rank of
(
X(X

′
X)−1X

′ −X2(X
′
2X2)−1X

′
2

)

= tr
(
X(X

′
X)−1X

′ −X2(X
′
2X2)−1X

′
2

)

= tr
(
X(X

′
X)−1X

′)− tr
(
X2(X

′
2X2)−1X

′
2

)

= tr(X
′
X(X

′
X)−1)− tr(X

′
2X2(X

′
2X2)−1)

= (p1 + p2)− p2 = p1

The distribution of the following quadratic form is the chi-square distribu-
tion with degrees of freedom p1:

y
′(

X(X
′
X)−1X

′ −X2(X
′
2X2)−1X

′
2

)
y ∼ σ2χ2

p1
.

Note that the matrix I−X(X
′
X)−1X

′
is idempotent and its rank is n−p1.

Applying the theorem of the distribution of the quadratic form, it can be
shown that total sum of residuals

s2 = y
′(

I −X(X
′
X)−1X

′)
y ∼ σ2χ2

n−p,

where p is the total number of parameters. In addition, It can be shown
that s2 is independent of SSEreduced − SSEfull. In fact, we only need to
show

[
X(X

′
X)−1X

′ −X2(X
′
2X2)−1X

′
2

][
I −X(X

′
X)−1X

′]
= 0.

It is easy to verify that

[
I −X(X

′
X)−1X

′][
X(X

′
X)−1X

′]
= 0.

It remains to show

[
I −X(X

′
X)−1X

′][
X2(X

′
2X2)−1X

′
2

]
= 0.

It is straightforward that

[
I −X(X

′
X)−1X

′]
X =

[
I −X(X

′
X)−1X

′]
(X1, X2) = 0.
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Note that X = (X1, X2) we have

[
I −X(X

′
X)−1X

′]
X2 = 0.

Therefore,

[
I −X(X

′
X)−1X

′]
X2

[
(X

′
2X2)−1X

′
2

]
= 0.

Thus, we can construct the following F test statistic:

F =
y
′
(
X(X

′
X)−1X

′ −X2(X
′
2X2)−1X

′
2

)
y/p1

y′
(
I −X(X

′
X)−1X

′
)
y/n− p

∼ Fp1,n−p. (3.22)

This test statistic can be used to test hypothesis H0 : β1 = 0 versus H1 :
β1 6= 0.

3.10 Test for General Linear Hypothesis

Consider the following multiple linear regression model

y = βX + ε,

where ε ∼ N(0, σ2In). It may be of interest to test the linear function of
model parameters. This can be formulated into the following general linear
hypothesis testing problem:

H0 : Cβ = d versus H1 : Cβ 6= d.

Here, C is a r×p matrix of rank r and r ≤ p, p is the number of parameters
in the regression model, or the dimension of β. Suppose that b is the least
squares estimation of β then we have

b ∼ N(β, σ2(X
′
X)−1)

and

Cb ∼ N(Cβ, σ2C(X
′
X)−1C

′
).

Under the null hypothesis H0 : Cβ = d, we have
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[Cb− d ]
′
[C(X

′
X)−1C

′
]−1[Cb− d ] ∼ σ2χ2

r,

therefore, the statistic that can be used for testing H0 : Cβ = d versus
H1 : Cβ �= d is the F test statistic in the following form:

F =
(Cb− d)

′
[C(X

′
X)−1C

′
]−1(Cb− d)

rs2
∼ Fr,n−p. (3.23)

3.11 The Least Squares Estimates of Multiple Regression
Parameters Under Linear Restrictions

Sometimes, we may have more knowledge about regression parameters, or
we would like to see the effect of one or more independent variables in a
regression model when the restrictions are imposed on other independent
variables. This way, the parameters in such a regression model may be
useful for answering a particular scientific problem of interest. Although
restrictions on regression model parameters could be non-linear we only
deal with the estimation of parameters under general linear restrictions.
Consider a linear regression model

y = βX + ε.

Suppose that it is of interest to test the general linear hypothesis: H0 :
Cβ = d versus H1 : Cβ �= d, where d is a known constant vector. We
would like to explore the relationship of SSEs between the full model and
the reduced model. Here, the full model is referred to as the regression
model without restrictions on the parameters and the reduced model is
the model with the linear restrictions on parameters. We would like to
find the least squares estimation of β under the general linear restriction
Cβ = d. Here C is a r×p matrix of rank r and r ≤ p. With a simple linear
transformation the general linear restriction Cβ = d can be rewritten as
Cβ∗ = 0. So, without loss of generality, we consider homogeneous linear
restriction: Cβ = 0. This will simplify the derivations. The estimator we
are seeking for will minimize the least squares (y −Xβ)

′
(y −Xβ) under

the linear restriction Cβ = 0. This minimization problem under the linear
restriction can be solved by using the method of the Lagrange multiplier.
To this end, we construct the objective function Q(β, λ) with Lagrange
multiplier λ:
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Q(β, λ) = (y −Xβ)
′
(y −Xβ) + 2λCβ

= y
′
y + β

′
X

′
Xβ − β

′
X

′
y − y

′
Xβ + 2λCβ

To minimize the objective function Q(β, λ), we take the partial derivatives
with respect to each component of β and with respect to λ which yields
the following normal equations:

{
X

′
Xβ + Cλ = X

′
y

Cβ = 0

The solutions of the above normal equation are least squares estimators of
the regression model parameters under the linear restriction Cβ = 0. The
normal equation can be written in the form of blocked matrix:

(
X

′
X C

′

C 0

)(
β

λ

)
=

(
X

′
y

0

)
(3.24)

The normal equation can be easily solved if one can find the inverse matrix
on the left of the above normal equation. Formula of inverse blocked matrix
can be used to solve the solution of the system. To simplify the notations
we denote X

′
X = A, and the inverse matrix in blocked form is given by

(
X

′
X C

′

C 0

)−1

=
(

A C
′

C 0

)−1

=

A−1 −A−1C
′
(CA−1C

′
)−1CA−1 A−1C(CA−1C

′
)−1

(CA−1C
′
)−1C

′
A−1 −(CA−1C

′
)−1


By multiplying the blocked inverse matrix on the both sides of the above
normal equation the least squares estimator of β under the linear restriction
is given by

b∗ = (A−1 −A−1C
′
(CA−1C

′
)−1CA−1)X

′
y. (3.25)

For the full model (the model without restriction)

SSEfull = y
′
(I −XA−1X

′
)y.
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For the reduced model (the model with a linear restriction):

SSEred = y
′
(I −XA−1X

′
+ XA−1C

′
(CA−1C

′
)−1CA−1X

′
)y

Note that b = (X
′
X)−1X

′
y and we have

SSEred − SSEfull = y
′
(XA−1C(CA−1C

′
)−1CA−1X

′
)y

= y
′
X(X

′
X)−1C

′
(C(X

′
X)−1C

′
)−1C(X

′
X)−1X

′
y

= (Cb)
′
(C(X

′
X)−1C

′
)−1Cb.

Under the normality assumption the above expression is a quadratic form of
the normal variables. It can be shown that it has the chi-square distribution
with degrees of freedom as the rank of the matrix C(X

′
X)−1C

′
, which is

r, the number of parameters in the model. Thus, we can write

(Cb)
′
[C(X

′
X)−1C

′
]−1(Cb) ∼ σ2χ2

r. (3.26)

It can be shown that the s2 is independent of the above χ2 variable. Finally,
we can construct the F test statistic:

F =
(Cb)

′
[C(X

′
X)−1)C

′
]−1(Cb)

rs2
∼ Fr, n−p, (3.27)

which can be used to test the general linear hypothesis H0 : Cβ = 0 versus
H1 : Cβ 6= 0.

3.12 Confidence Intervals of Mean and Prediction in Mul-
tiple Regression

We now discuss the confidence intervals on regression mean and regression
prediction for multiple linear regression. For a given data point x

′
0 the fit-

ted value is ŷ|x0 = x
′
0b and V ar(ŷ|x0) = x

′
0Cov(b)x0 = x

′
0(X

′
X)−1x0σ

2.

Note that under the normality assumption on the model error term
E(ŷ|x0) = E(x0b) = x

′
0β and

(ŷ|x0)− E(ŷ|x0)

s
√

x
′
0(X

′
X)−1x0

∼ tn−p

where n is the total number of observations and p is the number of the
parameters in the regression model. Thus, the (1 − α)100% confidence
interval for E(ŷ|x0) is given by
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(ŷ|x0)± tα/2,n−ps

√
x

′
0(X

′
X)−1x0 (3.28)

Using the arguments similar to that in Chapter 2 the confidence interval
on regression prediction in multiple linear regression is given by:

(ŷ|x0)± tα/2,n−ps

√
1 + x

′
0(X

′
X)−1x0 (3.29)

3.13 Simultaneous Test for Regression Parameters

Instead of testing for regression parameters individually, we can simulta-
neously test for the model parameters. We describe this simultaneous hy-
pothesis test for multiple regression parameters using the vector notation:

H0 : β = β0, versus H1 : β �= β0,

where β
′
= (β0, β1, · · · , βp−1), a p-dimensional vector of regression parame-

ters, and β
′
0 = (β00, β10, · · · , βp−1,0), a p-dimensional constant vector. The

above simultaneous hypothesis testing problem can be tested using the fol-
lowing F test statistic which has the F distribution with degrees of freedom
p and n− p under H0:

F =
(b− β0)

′
(X

′
X)−1(b− β0)

ps2
∼ Fp,n−p.

Here n is the total number of observations and p is the total number of
regression parameters. To test simultaneously the regression parameters,
for a given test level α, if the observed b satisfies the following inequality
for a chosen cut-off Fα,p,n−p,

Pr
( (b− β0)

′
(X

′
X)−1(b− β0)

ps2
≤ Fα,p,n−p

)
≥ 1− α,

then H0 cannot be rejected. Otherwise, we accept H1. The F test statistic
can be used to construct the simultaneous confidence region for regression
parameters β:

{
β :

(b− β)
′
(X

′
X)−1(b− β)

ps2
≤ Fα,p,n−p

}
. (3.30)

Note that this simultaneous confidence region of the regression parameters
is an ellipsoid in R

p.
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3.14 Bonferroni Confidence Region for Regression Param-
eters

Instead of constructing an ellipsoid confidence region by a quadratic form
of the regression coefficients we can set a higher confidence level for each
parameter so that the joint confidence region for all regression coefficients
has a confidence level (1−α)100%. This can be done using the Bonferroni
approach. Suppose that we have p regression coefficients and would like to
construct a (1−α)100% joint confidence region for p regression parameters,
instead of using α/2 for each regression parameter we now use a higher level
α/2p to construct the Bonferroni confidence interval for all regression pa-
rameters βi, i = 1, 2, · · · , p. i.e., we choose a cut-off tα/2p, n−p and construct
the following confidence interval for each regression parameter:

bi ± tα/2p, n−p(standard error of bi).

Note that Cov(b) = (X
′
X)−1σ2. The standard error of bi can be estimated

by the squared root of the diagonal elements in the matrix (X
′
X)−1s2.

This confidence region is the p-dimensional rectangular in Rp and has a
joint confidence level of not less than 1 − α. Confidence region based on
the Bonferroni approach is conservative but the calculation is simpler.

The Bonferroni method can also be used to construct the confidence bounds
on regression mean. Suppose we have r data points x1, x2, · · · ,xr, and
want to construct the Bonferroni simultaneous confidence intervals on re-
gression means at points x1,x2, · · · , xr. The following formula gives the
simultaneous confidence intervals for regression means at the observations
x1, x2, · · · , xr:

ŷ(xj)± tα/2r, n−ps
√

x
′
j(X

′
X)−1xj (3.31)

The SAS code for calculating simultaneous confidence intervals on regres-
sion means and regression predictions are similar to those for the sim-
ple linear regression which was presented in the previous chapter for the
simple linear regression. The only difference is to set a higher confidence
level (1−α/2r)100% for the simultaneous confidence intervals on regression
means at x1,x2, · · · , xr.
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3.15 Interaction and Confounding

We have seen that linear regression is flexible enough to incorporate certain
nonlinearity in independent variables via polynomial or other transformed
terms of the independent variables. It is quite useful in many applications
that the independent variables in the linear regression are categorical. In
this section, we shall continue to demonstrate its great flexibility in handling
and exploring interactions. We will also show how linear regression is used
to evaluate the confounding effects among predictors.

A confounding variable (or factor) is an extraneous variable in a regression
model that correlates (positively or negatively) with both the dependent
variable and the independent variable. A confounding variable is associated
with both the probable cause and the outcome. In clinical study, the com-
mon ways of experiment control of the confounding factor are case-control
studies, cohort studies, and stratified analysis. One major problem is that
confounding variables are not always known or measurable. An interaction
in a regression model often refers to as the effect of two or more indepen-
dent variables in the regression model is not simply additive. Such a term
reflects that the effect of one independent variable depends on the values
of one or more other independent variables in the regression model.

The concepts of both interaction and confounding are more methodological
than analytic in statistical applications. A regression analysis is generally
conducted for two goals: to predict the response Y and to quantify the rela-
tionship between Y and one or more predictors. These two goals are closely
related to each other; yet one is more emphasized than the other depending
on application contexts. For example, in spam detection, prediction accu-
racy is emphasized as determining whether or not an incoming email is a
spam is of primary interest. In clinical trials, on the other hand, the experi-
menters are keenly interested to know if an investigational medicine is more
effective than the control or exposure, for which the standard treatment or
a placebo is commonly used, in treating some disease. The assessment of
treatment effect is often desired in analysis of many clinical trials. Both
interaction and confounding are more pertaining to the second objective.

Consider a regression analysis involving assessment of the association be-
tween the response and one (or more) predictor, which may be affected
by other extraneous predictors. The predictor(s) of major interest can be
either categorical or continuous. When it is categorical, it is often referred
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to as treatment in experimental designs. The difference it makes on the
responses is cited as the treatment effect. The extraneous predictors that
potentially influence the treatment effect are termed as covariates or control
variables. Interaction and confounding can be viewed as different manners
in which the covariates influence the treatment effect.

3.15.1 Interaction

By definition, interaction is referred to as the situation where the asso-
ciation of major concern or the treatment effect varies with the levels or
values of the covariates. Consider, for example, the treatment-by-center
interaction in a multi-center clinical trial, a common issue involved in a
clinical trial that is conducted in different medical centers. If the treat-
ment effect remains the same among different medical centers, then we say
that no interaction exists between treatment and center; if the treatment is
found effective, nevertheless, more or less across different medical centers,
then we say interaction exists between treatment and center and interaction
involved is referred to as quantitative interaction; if the new treatment is
found effective than the control in some medical centers but harmful than
the control in some other centers, then the interaction is referred to as qual-
itative interaction. There is a directional change in treatment effect across
centers in the case of qualitative interaction while the treatment effect only
differs in amount, not in direction of the comparison, with quantitative in-
teractions. Quantitative interactions are quite common. But if qualitative
interaction exists, it causes much more concerns. It is thus imperative in
clinical trials to detect and, if exists, fully explore and test for qualitative
interaction. In the following discussion, we shall treat these two types of
interaction by the same token, while referring interested readers to Gail and
Simon (1985) and Yan and Su (2005) for more discussion on their important
differences.

In linear regression, interaction is commonly formulated by cross-
product terms. Consider the regression setting of response Y and two
continuous regressors X1 and X2. The interaction model can be stated as,
ignoring the subscript i for observations,

y = β0 + β1x1 + β2x2 + β3x1x2 + ε. (3.32)

Recall that in the additive or main effect model

y = β0 + β1x1 + β2x2 + ε, (3.33)
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the association between Y and X1 is mainly carried by its slope β1, which
corresponds to the amount of change in the mean response E(Y ) with one
unit increase in X1, holding X2 fixed. Here the slope β1, which does not
depend on X2, remains unchanged with different values of X2 and hence
can be interpreted as the main effect of X1. Similar interpretation holds
for the slope β1 of X2.

x1

y

(a) main effect model

x1

y

(b) interaction model

Fig. 3.1 Response Curves of Y Versus X1 at Different Values of X2 in Models (3.33)
and (3.32).

In model (3.32), we can extract the ‘slopes’ for X1 and X2 by rewriting

E(y) = (β0 + β2x2) + (β1 + β3x2) · x1

= (β0 + β1x1) + (β2 + β3x1) · x2

The slope for X1 now becomes (β1 + β3x2), which depends on what value
X2 is fixed at. For this reason, X2 is said to be an effect-modifier of X1.
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It is instructive to plot the response curves for Y versus X1 at different
values of X2 for models (3.33) and (3.32), as shown in Fig. 3.1. We can
see that the response curves in the main effect model are parallel lines
with the same slope and different intercepts while in the interaction model
the lines are no longer parallel. This explains why no interaction is often
viewed as synonymous to parallelism, a principle in interaction detection
that is applicable to various settings such as two-way analysis of variance
(ANOVA) and comparing two or more response curves. Analogously, the
slope for X2 is (β2 + β3x1), which depends on what value X1 is fixed at.

Interaction among predictors can be generally formulated as cross prod-
uct terms. For instance, an interaction model for Y versus X1, X2, and X3

can be written as

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3 + β7x1x2x3 + ε

= (β0 + β2x2 + β3x3 + β6x2x3) + (β1 + β4x2 + β5x3 + β7x2x3) x1 + ε.

The products involving two terms xixj , i 6= j, are referred to as first-order
interactions; the three-term cross-products such as xixjxk, i 6= j 6= k, are
called second-order interactions; and so on for higher-order interactions in
general. The higher order of the interaction, the more difficult it would be
in model interpretation. As seen in the above model, the slope for X1 is
(β1 + β4x2 + β5x3 + β7x2x3), which depends on both x2 and x3 values in
a complicated manner. To retain meaningful and simple model interpre-
tation, it is often advised to consider interactions only up to the second
order. In reality, interaction can be of high order with a complicated form
other than cross products, which renders interaction detection a dunting
task sometimes.

3.15.2 Confounding

Confounding is generally related to the broad topic of variable controlling or
adjustment. Variable controlling and adjustment, which plays an important
role to help prevent bias and reduce variation in treatment effect assessment,
can be incorporated into a study at two stages. The first stage is in the
design of the study. Consider, for instance, a study where the objective is to
compare the prices of soft drinks of different brands, say, (A, B, and C). In
a completely randomized design, one randomly goes to a number of grocery
stores, pick up a drink of Brand A from each store, and record its price;
then another set of grocery stores are randomly selected for Brand B; and so
on for Brand C. Data collected in this manner result in several independent
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random samples, one for each treatment or brand, and the analysis can be
carried out using the one-way ANOVA technique. The potential problem
with this design, however, is that the treatment effect, as measured by the
differences in price among the three groups, would be contaminated due to
heterogeneity in other factors. Imagine what would happen if it turns out
that price data collected for Brand A are taken from stores, mostly located
in Minnesota in winter times while data collected for Brand B are taken
during summer times from stores mostly located in Florida. In this case,
we will be unable to obtain a genuine evaluation of the price difference due
to brands. A better approach in this study is to employ a randomized block
design with grocery stores being blocks, which can be described as follows.
One randomly selects a number of grocery stores first; at each store, pick
up a Brand A drink, a Brand B drink, and a Brand C drink and record
their prices. In this way, we are able to control for many other geographical
and longitudinal factors. By controlling, it means to make sure that they
have the same or similar values. In general, if we know which factors are
potentially important, then we can make control for them beforehand by
using block or stratified designs.

However, very often we are pretty much blind about which factors are
important. Sometimes, even if we have a good idea about them according
to previous studies or literatures, we nevertheless do not have the authority
or convenience to perform the control beforehand in the design stage. This
is the case in many observational studies. Or perhaps there are too many
of them; it is impossible to control for all. In this case, the adjustment
can still be made in a post hoc manner at the data analysis stage. This
is exactly what the analysis of covariance (ANCOVA) is aimed for. The
approach is to fit models by including the important covariates.

The conception of confounding is casted into the post hoc variable ad-
justment at the data analysis stage. In general, confounding occurs if in-
terpretations of the treatment effect are statistically different when some
covariates are excluded or included in the model. It is usually assessed
through a comparison between a crude estimator of the treatment effect
by ignoring the extraneous variables and an estimate after adjusting for
the covariates. Consider a setting (Y vs. Z, X1, . . . , Xp), where variable Z

denotes the treatment variable of major interest and X1, . . . , Xp denote the
associated covariates. The comparison can be carried out in terms of the
following two models:

y = β0 + β1z + ε (3.34)
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and

y = β0 + β1z + α1x1 + · · ·+ αpxp + ε. (3.35)

Let β̂
(c)
1 denote the least squares estimator of β1 in model (3.34), which

gives a rudimentary assessment of the treatment effect. Let β̂
(a)
1 denote the

least squares estimator of β1 in model (3.35), which evaluates the treatment
effect after adjusting or controlling for covariates (X1, . . . , Xp). We say
confounding is present if these two estimates, combined with their standard
errors, are statistically different from each other. In this case, (X1, . . . , Xp)
are called confounders (or confounding factors) of Z.

In the traditional assessment of confounding effects, a statistical test is
not required, perhaps because the analytical properties of (β̂(a)

1 − β̂
(c)
1 ) are

not easy to comprehend unless resampling techniques such as bootstrap is
used. It is mainly up to field experts to decide on existence of confounders
and hence can be subjective. Another important point about confounding
is that its assessment would become irrelevant if the treatment is strongly
interacted with covariates. Interaction should be assessed before looking
for confounders as it no longer makes sense to purse the main or separate
effect of the treatment when it really depends on the levels or values of the
covariates.

3.16 Regression with Dummy Variables

In regression analysis, a dummy variable is one that takes the value 0 or
1 to indicate the absence or presence of some categorical effect that may
be expected to shift outcome. The reason we say “dummy” because it is
not a variable that carries value of actual magnitude. For example, in a
clinical trial, it is often useful to define a dummy variable D and D = 1
represents treatment group and D = 0 indicates placebo group; or we can
introduce dummy variable S and define S = 1 for male group and 0 for
female group. The mean value of a dummy variable is the proportion of
the cases in the category coded 1. The variance of a dummy variable is∑

D2
i

/
n− (

∑
Di

/
n)2 = p− p2 = p(1− p), where p is the proportion of the

cases in the category coded 1. Example of a regression model with dummy
variable gender is:

Yi = β0 + β1Xi + β2Di + εi (3.36)
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where Yi is the annual salary of a lawyer, Di = 1 if the lawyer is male and
Di = 0 if the lawyer is female, and Xi is years of experience. This model
assumes that there is a mean salary shift between male lawyers and female
lawyers. Thus, the mean salary is E(Yi|Di = 1) = β0 + β2 + β1Xi for a
male lawyer and is E(Yi|Di = 0) = β0 +β1Xi for a female lawyer. A test of
the hypothesis H0 : β2 = 0 is a test of the hypothesis that the wage is the
same for male lawyers and female lawyers when they have the same years
of experience.

Several dummy variables can be used together to deal with more complex
situation where more than two categories are needed for regression analysis.
For example, variable race usually refers to the concept of categorizing
humans into populations on the basis of various sets of characteristics. A
variable race can have more than two categories. Suppose that we wanted
to include a race variable with three categories White/Asian/Black in a
regression model. We need to create a whole new set of dummy variables
as follows





D1i = 1, if the person is white
D1i = 0, otherwise
D2i = 1, if the person is asian
D2i = 0, otherwise

Here, the ‘black’ person category is treated as the base category and there
is no need to create a dummy variable for this base category. All salary
comparisons between two races in the regression model will be relative to
the base category. In general, if there are m categories that need to be con-
sidered in a regression model it is needed to create m−1 dummy variables,
since the inclusion of all categories will result in perfect collinearity. Sup-
pose that we would like to model the relation between the salary of a lawyer
in terms of years of experience (Xi) and his/her race determined jointly by
two dummy variables D1i, D2i, we can use the following regression model
with the two dummy variables :

Yi = β0 + β1Xi + β2D1i + β3D2i + εi, (3.37)

where Yi is the salary of the lawyer, Xi is years of his/her working experi-
ence, and D1i and D2i are dummy variables that determine the race of the
lawyer. For example, based on the above regression model, the expected
salary for a black lawyer with Xi years of working experience is
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E(Yi|D1i = 0, D2i = 0) = β0 + β1Xi.

The expected salary for a white lawyer with Xi years of working experience
is

E(Yi|D1i = 1, D2i = 0) = β0 + β1Xi + β2.

The expected salary for an asian lawyer with Xi years of working experience
is

E(Yi|D1i = 0, D2i = 1) = β0 + β1Xi + β3.

In each case the coefficient of the dummy variable in the regression
model represents the difference with the base race (the black lawyer’s
salary). Thus, the interpretation of β2 is that a white lawyer earns β2

more than a black lawyer, and the interpretation of β3 is that an asian
lawyer earns β3 more than a black lawyer. The hypothesis test H0 : β2 = 0
is to test whether the wage is identical for a white lawyer and a black lawyer
with same years of experience. And the hypothesis test H0 : β3 = 0 is to
test that whether the wage is identical for an asian lawyer and a black
lawyer with same years of experience.

Furthermore, if we would like to consider race effect and gender effect to-
gether, the following model with multiple dummy variables can be used:

Yi = β0 + β1Xi + β2D1i + β3D2i + β4Di + εi (3.38)

According to model (3.38), for example, the expected salary for a female
black lawyer with Xi years of experience is

E(Yi|D1i = 0, D2i = 0, Di = 0) = β0 + β1Xi.

For a black male lawyer with Xi years of experience, the expected salary is

E(Yi|D1i = 0, D2i = 0, Di = 1) = β0 + β1Xi + β4.

For a white male lawyer with Xi years of experience, the expected salary is
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E(Yi|D1i = 1, D2i = 0, Di = 1) = β0 + β1Xi + β2 + β4.

The hypothesis test H0 : β4 = 0 is to test if the wage is the same for
male lawyer and female lawyer with the same years of experience. The
hypothesis test H0 : β2 = β4 = 0 is to test if the wage is the same for male
white lawyer and black lawyer with the same years of experience and if the
gender has no impact on the salary.

If we have k categories then k − 1 dummy variables are needed. This is
because in the classical regression it is required that none of exploratory
variable should be a linear combination of remaining exploratory model
variables to avoid collinearity. For example, we can use the dummy variable
D and code D = 1 for male, if we also use another dummy variable S =
0 to indicate female, then there is a linear relation between D and S:
D = 1 − S. Therefore, information become redundant. Thus, one dummy
variable should be sufficient to represent information on gender. In general,
k− 1 dummy variables are sufficient to represent k categories. Note that if
Di’s, i = 1, 2, · · · , k− 1, are k− 1 dummy variables then Di = 1 represents
a category out of the total k categories, and all Di = 0 represents the base
category out of the total k categories. Thus, k − 1 dummy variables are
sufficient to represent k distinct categories.

If a regression model involves a nominal variable and the nominal vari-
able has more than two levels, it is needed to create multiple dummy vari-
ables to replace the original nominal variable. For example, imagine that
you wanted to predict depression level of a student according to status of
freshman, sophomore, junior, or senior. Obviously, it has more than two
levels. What you need to do is to recode “year in school” into a set of
dummy variables, each of which has two levels. The first step in this pro-
cess is to decide the number of dummy variables. This is simply k − 1,
where k is the number of levels of the original nominal variable. In this
instance, 3 dummy variables are needed to represent 4 categories of student
status.

In order to create these variables, we are going to take 3 levels of “year
in school”, and create a variable corresponding to each level, which will
have the value of yes or no (i.e., 1 or 0). In this example, we create three
variables sophomore, junior, and senior. Each instance of “year in school”
would then be recoded into a value for sophomore, junior, and senior. If
a person is a junior, then variables sophomore and senior would be equal



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

Multiple Linear Regression 81

to 0, and variable junior would be equal to 1. A student with all variables
sophomore, junior, and senior being all 0 is a freshman.

The decision as to which level is not coded is often arbitrary. The level
which is not coded is the category to which all other categories will be
compared. As such, often the biggest group will be the not-coded category.
In a clinical trial often the placebo group or control group can be chosen
as the not-coded group. In our example, freshman was not coded so that
we could determine if being a sophomore, junior, or senior predicts a differ-
ent depression level than being a freshman. Consequently, if the variable
“junior” is significant in our regression, with a positive coefficient β, this
would mean that juniors are significantly more depressive than freshmen.
Alternatively, we could have decided to not code “senior”, then the coeffi-
cients for freshman, sophomore and junior in the regression model would be
interpreted as how much more depressive if being a freshman, sophomore,
or junior predicts a different depressive level than being a senior.

For the purpose of illustration, the simple regression model with one dummy
variable is shown in Fig. 3.2. In the figure, (a) represents regression model
with only dummy variable and without regressor. The two groups are
parallel. (b) represents the model with dummy variable and regressor x,
but two groups are still parallel, (c) represents the model with dummy
variable and regressor x. The two groups are not parallel but without
crossover. (d) represents the model with dummy variable and regressor x.
The two groups are not parallel and with crossover. In situations (c) and
(d) we say that there is interaction which means that the response of one
group is not always better/higher than the response of the other group by
the same magnitude. Situation (c) is quantitative interaction and (d) is
qualitative interaction or crossover interaction.

3.17 Collinearity in Multiple Linear Regression

3.17.1 Collinearity

What is the collinearity in multiple linear regression? The collinearity refers
to the situation in which two or more independent variables in a multiple
linear regression model are highly correlated. Let the regression model be
y = X+ε with the design matrix X = (1, x1, x2, · · · ,xk). The collinearity
occurs if the independent variable xi is highly linearly correlated to another
one or more independent variables xj1,xj2, · · · , xjk. In other words, xi
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Fig. 3.2 Regression on Dummy Variables

can be almost linearly expressed by one or more other column vectors in
X. In this situation, the matrix X

′
X is ill-conditioned or near singular.

Although it is not completely singular, its eigenvalues may be close to zero
and the eigenvalues of the inverse matrix (X

′
X)−1 tend to be very large

which may cause instability of the least squares estimates of the regression
parameters. If there is a perfect collinearity among column vectors of X

then the matrix X
′
X is not invertible. Therefore, it is problematic to
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solve for the unique least squares estimators of the regression coefficients
from the normal equation. When the column vectors of the design matrix
X is highly correlated, then the matrix XtX becomes ill-conditioned and
the least squares estimator become less reliable even though we can find
a unique solution of the normal equation. To see this let’s look at the
following example of two simple data sets (Tables 3.1 and 3.2).

Table 3.1 Two Independent Vectors

x1 10 10 10 10 15 15 15 15
x2 10 10 15 15 10 10 15 15

Table 3.2 Two Highly Correlated Vectors

x1 10.0 11.0 11.9 12.7 13.3 14.2 14.7 15.0
x2 10.0 11.4 12.2 12.5 13.2 13.9 14.4 15.0

The correlation matrix of the vectors in the first example data is a 2 × 2
identity matrix

X
′
X =

(
1 0
0 1

)
.

Thus, its inverse matrix is also a 2 × 2 identity matrix. The correlation
matrix of the two vectors in the second example data set is

X
′
X =

(
1.00000 0.99215
0.99215 1.00000

)

and its inverse matrix is given by

(X
′
X)−1 =

(
63.94 −63.44

−64.44 63.94

)
.

Note that for linear regression, Var(b) = (X
′
X)−1σ2. For the vectors in

the first example data set we have

Var(b1)
σ2

=
Var(b2)

σ2
= 1.
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For the vectors in the second example data set we have

Var(b1)
σ2

=
Var(b2)

σ2
= 63.94

The variances of the regression coefficients are inflated in the example of
the second data set. This is because the collinearity of the two vectors in
the second data set. The above example is the two extreme cases of the
relationship between the two vectors. One is the case where two vectors
are orthogonal to each other and the other is the case where two vectors
are highly correlated.

Let us further examine the expected Euclidean distance between the least
squares estimate b and the true parameter β, E(b − β)

′
(b − β) when

collinearity exists among the column vectors of X. First, it is easy to
know that E[(b− β)

′
(b− β)] = E(b

′
b)− β

′
β. We then calculate E(b

′
b).

E(b
′
b)

= E[(X
′
X)−1X

′
y
′
(X

′
X)−1X

′
y]

= E[y
′
X(X

′
X)−1(X

′
X)−1X

′
y]

= (Xβ)
′
X(X

′
X)−1(X

′
X)−1X

′
Xβ + σ2tr[X(X

′
X)−1(X

′
X)−1X

′
]

= β
′
X

′
X(X

′
X)−1(X

′
X)−1X

′
Xβ + σ2tr[X

′
X(X

′
X)−1(X

′
X)−1]

= β
′
β + σ2tr[(X

′
X)−1]

Thus, we have

E[(b− β)
′
(b− β)] = σ2tr[(X

′
X)−1].

Note that E[(b − β)
′
(b − β)] is the average Euclidean distance measure

between the estimate b and the true parameter β. Assuming that (X
′
X)

has k distinct eigenvalues λ1, λ2, · · · , λk, and the corresponding normalized
eigenvectors V = (v1, v2, · · · , vk), we can write

V
′
(X

′
X)V = diag(λ1, λ2, · · · , λk).

Moreover,

tr[V
′
(X

′
X)V ] = tr[V V

′
(X

′
X)] = tr(X

′
X) =

k∑

i=1

λi.
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Since the eigenvalues of (X
′
X)−1 are

1
λ1

,
1
λ2

, · · · ,
1
λk

we have

E(b
′
b) = β

′
β + σ2

k∑

i=1

1
λi

,

or it can be written as

E
( k∑

i=1

b2
i

)
=

k∑

i=1

β2
i + σ2

k∑

i=1

1
λi

. (3.39)

Now it is easy to see that if one of λ is very small, say, λi = 0.0001, then
roughly,

∑k
i=1 b2

i may over-estimate
∑k

i=1 β2
i by 1000σ2 times. The above

discussions indicate that if some columns in X are highly correlated with
other columns in X then the covariance matrix (XX

′
)−1σ2 will have one

or more large eigenvalues so that the mean Euclidean distance of E[(b −
β)

′
(b − β)] will be inflated. Consequently, this makes the estimation of

the regression parameter β less reliable. Thus, the collinearity in column
vectors of X will have negative impact on the least squares estimates of
regression parameters and this need to be examined carefully when doing
regression modeling.

How to deal with the collinearity in the regression modeling? One easy
way to combat collinearity in multiple regression is to centralize the data.
Centralizing the data is to subtract mean of the predictor observations from
each observation. If we are not able to produce reliable parameter estimates
from the original data set due to collinearity and it is very difficult to judge
whether one or more independent variables can be deleted, one possible
and quick remedy to combat collinearity in X is to fit the centralized data
to the same regression model. This would possibly reduce the degree of
collinearity and produce better estimates of regression parameters.

3.17.2 Variance Inflation

Collinearity can be checked by simply computing the correlation matrix of
the original data X. As we have discussed, the variance inflation of the
least squares estimator in multiple linear regression is caused by collinearity
of the column vectors in X. When collinearity exists, the eigenvalues of
the covariance matrix (X

′
X)−1σ2 become extremely large, which causes

severe fluctuation in the estimates of regression parameters and makes these
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estimates less reliable. Variance inflation factor is the measure that can be
used to quantify collinearity. The ith variance inflation factor is the scaled
version of the multiple correlation coefficient between the ith independent
variable and the rest of the independent variables. Specifically, the variance
inflation factor for the ith regression coefficient is

VIFi =
1

1−R2
i

, (3.40)

where R2
i is the coefficient of multiple determination of regression produced

by regressing the variable xi against the other independent variables xj , j 6=
i. Measure of variance inflation is also given as the reciprocal of the above
formula. In this case, they are referred to as tolerances.

If Ri equals zero (i.e., no correlation between xi and the remaining in-
dependent variables), then VIFi equals 1. This is the minimum value of
variance inflation factor. For the multiple regression model it is recom-
mended looking at the largest VIF value. A VIF value greater than 10 may
be an indication of potential collinearity problems. The SAS procedure
REG provides information on variance inflation factor and tolerance for
each regression coefficient. The following example illustrates how to obtain
this information using SAS procedure REG.

Example 3.1. SAS code for detection of collinearity and calculation the
variance inflation factor.

Data example;

input x1 x2 x3 x4 x5 y;

datalines;

15.57 2463 472.92 18.0 4.45 566.52

44.02 2048 1339.75 9.5 6.92 696.82

20.42 3940 620.25 12.8 4.28 1033.15

18.74 6505 568.33 36.7 3.90 1603.62

49.20 5723 1497.60 35.7 5.50 1611.37

44.92 11520 1365.83 24.0 4.6 1613.27

55.48 5779 1687.00 43.3 5.62 1854.17

59.28 5969 1639.92 46.7 5.15 2160.55

94.39 8461 2872.33 78.7 6.18 2305.58

128.02 20106 3655.08 180.5 6.15 3503.93

96.00 13313 2912.00 60.9 5.88 3571.89

131.42 10771 3921.00 103.7 4.88 3741.40

127.21 15543 3865.67 126.8 5.50 4026.52
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252.90 36194 7684.10 157.7 7.00 10343.81

409.20 34703 12446.33 169.4 10.78 11732.17

463.70 39204 14098.40 331.4 7.05 15414.94

510.22 86533 15524.00 371.6 6.35 18854.45

;

run;

proc reg data=example corr alpha=0.05;

model y=x1 x2 x3 x4 x5/tol vif collin;

run;

*Fit the regression model after deleting variable X1;

proc reg data=example corr alpha=0.05; ;

model y=x2 x3 x4 x5/tol vif collin;

run;

The keyword TOL requests tolerance values for the estimates, VIF gives
the variance inflation factors with the parameter estimates, and COLLIN
requests a detailed analysis of collinearity among regressors. Variance infla-
tion (VIF) is the reciprocal of tolerance (TOL). The above SAS procedures
produce the following Table 3.3. The table shows that variables x1 and x3

are highly correlated. Due to this high correlation the variance inflation for
both the variables x1 and x3 are rather significant and it can be found in
Table 3.4.

We then delete variable x1 and recalculate the correlation matrix. It
can be seen that the variance inflations for all independent variables become
much smaller after deleting x1. The results of the correlation matrix and
variance inflation are presented in Tables 3.5 and 3.6.

The least squares estimates in the regression model including the in-
dependent variables x2, x3, x4 and x5 behave much better than the model
including all independent variables. The collinearity is eliminated by delet-
ing one independent variable x1 in this example.

3.18 Linear Model in Centered Form

The linear model can be rewritten in terms of centered x’s as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

= α + β1(xi1 − x̄1) + β2(xi2 − x̄2) + · · ·+ βk(xik − x̄k) + εi (3.41)
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Table 3.3 Correlation Matrix for Variables x1, x2, · · · , x5

Variable x1 x2 x3 x4 x5 y

x1 1.0000 0.9074 0.9999 0.9357 0.6712 0.9856
x2 0.9074 1.0000 0.9071 0.9105 0.4466 0.9452
x3 0.9999 0.9071 1.0000 0.9332 0.6711 0.9860
x4 0.9357 0.9105 0.9332 1.0000 0.4629 0.9404
x5 0.6712 0.4466 0.6711 0.4629 1.0000 0.5786
y 0.9856 0.9452 0.9860 0.9404 0.5786 1.0000

Table 3.4 Parameter Estimates and Variance Inflation

Variable Parameter STD t value P > |t| Tolerance Inflation

Intercept 1962.95 1071.36 1.83 0.094 0
x1 -15.85 97.66 -0.16 0.874 0.0001042 9597.57
x2 0.06 0.02 2.63 0.023 0.12594 7.94
x3 1.59 3.09 0.51 0.617 0.000112 8933.09
x4 -4.23 7.18 -0.59 0.569 0.04293 23.29
x5 -394.31 209.64 -1.88 0.087 0.23365 4.28

Table 3.5 Correlation Matrix after Deleting Variable x1

Variable x2 x3 x4 x5 y

x2 1.0000 0.9071 0.9105 0.4466 0.9452
x3 0.9071 1.0000 0.9332 0.6711 0.9860
x4 0.9105 0.9332 1.0000 0.4629 0.9404
x5 0.4466 0.6711 0.4629 1.0000 0.5786
y 0.9452 0.9860 0.9404 0.5786 1.0000

Table 3.6 Variance Inflation after Deleting x1

variable parameter std t value P > |t| tolerance inflation

intercept 2032.19 942.075 2.16 0.0520 0
x2 0.056 0.020 2.75 0.0175 0.126 7.926
x3 1.088 0.153 7.10 < .0001 0.042 23.927
x4 -5.00 5.081 -0.98 0.3441 0.079 12.706
x5 -410.083 178.078 -2.30 0.0400 0.298 3.361

for i = 1, . . . , n, where

α = β0 + β1x̄1 + · · ·+ βkx̄k

or

β0 = α− (β1x̄1 + · · ·+ βkx̄k) = α− x̄′β1; (3.42)
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x̄ = (x̄1, x̄2, . . . , x̄k)′; β1 = (β1, β2, . . . , βk)′; and x̄j denotes the sample
average of xij ’s for j = 1, . . . , k. In the centered form, Y is regressed on
centered X’s, in which case the slope parameters in β1 remain the same.
This centered form sometimes brings convenience in derivations of esti-
mators of the linear models. Also, one can try the regression model in
centered form when collinearity is observed among the independent vari-
ables and independent variables are difficult to be eliminated. Expressed
in matrix form, model (3.41) becomes

y = (j,Xc)
(

α

β1

)
+ ε, (3.43)

where

Xc =
(
I− 1

n
J
)

X1 = (xij − x̄j) ; (3.44)

and X1 = (xij) for i = 1, . . . , n and j = 1, . . . , k. Here matrix X1 is the
sub-matrix of X after removing the first column of all 1’s.

The matrix C = I− 1/n ·J is called the centering matrix, where J = jj′

is an n × n matrix with all elements being 1. A geometric look at the
centering matrix shows that

C = I− 1
n
· J = I− j(j′j)−1j′, noting j′j = n

= I−PW = PW⊥ ,

where W = C(j) denotes the subspace spanned by j; W⊥ is the subspace
perpendicular to W; and PW and PW⊥ are their respective projection
matrices. Namely, matrix C is the project matrix on the subspace that is
perpendicular to the subspace spanned by j. It follows immediately that

(I− 1
n
· J)j = 0 and j′Xc = 0 (3.45)

Using (3.45), the least squared estimators of (α, β1) are given by,
(

α̂

β̂1

)
= {(j, Xc)′(j, Xc)}−1 (j, Xc)′y =

(
n 0′

0 X′
cXc

)−1 (
nȳ

X′
cy

)

=
(

1/n 0′

0 (X′
cXc)−1

)(
nȳ

X′
cy

)

=
(

ȳ

(X′
cXc)−1X′

cy

)
.
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Thus, β̂1 is the same as in the ordinary least squares estimator β̂1 and

β̂0 = ȳ − x̄′β̂1 (3.46)

in view of (3.42) and uniqueness of LSE.
Using the centered form, many interesting properties of the least squares

estimation can be easily obtained. First, the LS fitted regression plane
satisfies

y − α̂ = y − ȳ = (x− x̄)′β̂1

and hence must pass through the center of the data (x̄, ȳ).
Denote Vc = C(Xc). Since W = C(j) ⊥ Vc using (3.45),

V = C(X) = W ⊕Vc.

The vector fitted values is

ŷ = PVy = PWy + PVc y = ȳj + Xc(X′
cXc)−1X′

cy = ȳj + Xcβ̂1 (3.47)

and the residual vector is

e = (I−PW −PVc)y = (PW⊥ −PVc)y. (3.48)

Consider the sum of squared error (SSE), which becomes

SSE = ‖ y − ŷ ‖2= e′e

= y′(PW⊥ −PVc)y = y′PW⊥y − y′PVc y

=
n∑

i=1

(yi − ȳ)2 − β̂
′
1X

′
cy = SST− β̂

′
1X

′
cy. (3.49)

Namely, the sum of squares regression (SSR) is SSR = β̂
′
1X

′
cy.

The leverage hi = x′i(X
′X)−1xi can also be reexpressed for better inter-

pretation using the centered form. Letting x1i = (xi1, x2i, . . . , xik)′,

hi = (1, x′1i − x̄′) {(j, Xc)′(j, Xc)}−1
(

1
x1i − x̄

)

= (1, x′1i − x̄′)
(

1/n 0′

0 (X′
cXc)−1

)(
1

x1i − x̄

)

=
1
n

+ (x1i − x̄)′(XcXc)−1(x1i − x̄). (3.50)
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Note that

XcXc = (n− 1)Sxx, (3.51)

where

Sxx =




s2
1 s12 · · · s1k

s21 s2
2 · · · s2k

...
...

...
sk1 sk2 · · · s2

k


 with

{
s2

j =
∑n

i=1(xij − x̄j)2

sjj′ =
∑n

i=1(xij − x̄j)(xij′ − x̄j′)

is the sample variance-covariance matrix for x vectors. Therefore, hi in
(3.50) is

hi =
1
n

+
(x1i − x̄)′S−1

xx (x1i − x̄)
n− 1

. (3.52)

Clearly, the term (x1i − x̄)′S−1
xx (x1i − x̄) gives the Mahalanobis distance

between x1i and the center of the data x̄, which renders hi an important
diagnostic measure for assessing how outlying an observation is in terms of
its predictor values.

Furthermore, both β̂0 and β̂1 can be expressed in terms of the sample
variances and covariances. Let syx denote the covariance vector between Y

and Xj ’s. Namely,

syx = (sy1, sy2, . . . , syk)′, (3.53)

where

syj =
∑n

i=1(xij − x̄j) · (yi − ȳ)
n− 1

=
∑n

i=1(xij − x̄j) · yi

n− 1
.

It can be easily seen that

(n− 1) · syx = X′y. (3.54)

Using equations (3.51) and (3.54), we have

β̂1 =
(

X′
cXc

n− 1

)−1 X′
cy

n− 1
= S−1

xx syx (3.55)

and

β̂0 = ȳ − β̂
′
1x̄ = ȳ − s′yxS

−1
xx x̄. (3.56)

The above forms are now analogous to those formulas for β̂1 and β̂0 in
simple linear regression.
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Besides, the coefficient of determination R2 can also be expressed in
terms of Sxx and syx as below

R2 =
SSR
SST

=
β̂
′
1X

′
cXcβ̂1∑n

i=1(yi − ȳ)2

=
s′yxS

−1
xx (n− 1)SxxS−1

xx syx∑n
i=1(yi − ȳ)2

=
s′yx S−1

xx syx

s2
y

. (3.57)

3.19 Numerical Computation of LSE via QR Decomposi-
tion

According to earlier derivation, the least squares estimator β̂ is obtained
by solving the normal equations

X′Xβ = X′y. (3.58)

Nevertheless, the approach is not very computationally attractive because
it can be difficult to form matrices in (3.58) to a great numerical accuracy.
Instead, computation of LSE, as well as many other related quantities, is
carried out through QR decomposition of the design matrix X. The basic
idea of this approach utilizes a successive orthogonalization process on the
predictors to form an orthogonal basis for the linear space V = C(X).

3.19.1 Orthogonalization

To motivate, we first consider the simple regression (Y versus X) with
design matrix X = (j,x). The LSE of β1 is given by

β̂1 =
∑n

i=1(xi − x̄) · (yi − ȳ)∑n
i=1(xi − x̄)2

=
∑n

i=1(xi − x̄) · yi∑n
i=1(xi − x̄)2

=
〈x− x̄j,y〉

〈x− x̄j,x− x̄j〉 ,

where 〈x,y〉 = xty denotes the inner product between x and y. The above
estimate β̂1 can be obtained in two steps, either applying a simple linear
regression without intercept. In step 1, regress x on j without intercept
and obtain the residual e = x− x̄j; and in step 2, regress y on the residual
e without intercept to produce β̂1.

Note that regressing u on v without intercept by fitting model

ui = γvi + εi
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gives

γ̂ =
〈u,v〉
〈v,v〉 and residual vector e = u− γ̂v, (3.59)

which is exactly the step in linear algebra taken to orthogonalize one vector
u with respect to another vector v. The key point is to ensure residual vector
e to be orthogonal to v, i.e., e ⊥ v or 〈e,v〉 = 0.

Orthogonality often provides great convenience and efficiency in de-
signed experiments. It is easy to show, for example, that if the k predictors
x1,x2, . . . ,xk in a multiple linear regression model are orthogonal to each
other, then the LSE of the j-th slope equals

β̂j =
〈xj ,y〉
〈xj ,xj〉 ,

which is the same as the slope estimator obtained in a simple linear regres-
sion model that regresses y on xj . This implies that orthogonal predictors
have no confounding effect on each other at all.

In the two-step approach, the subspace C(j,x) spanned by (j,x) is the
same as the subspace spanned by the orthogonal basis (j, e). This idea
can be generalized to multiple linear regression, which leads to the algo-
rithm outlined below. This is the well-known Gram-Schmidt procedure for
constructing an orthogonal basis from an arbitrary basis. Given a design
matrix X = (x0 = j,x1, . . . ,xk) with columns xj , the result of the algo-
rithm is an orthogonal basis (e0,e1, . . . , ek) for the column subspace of X,

V = C(X).

Algorithm 9.1: Gram-Schmidt Algorithm for Successive Orthogonalization.

• Set e0 = j;

• Compute γ01 = 〈x1, e0〉/〈e0, e0〉 and e1 = x1 − γ01 e0;

• Compute γ02 = 〈x2, e0〉/〈e0, e0〉 and γ12 = 〈x2, e1〉/〈e1, e1〉 and ob-
tain e2 = x2 − (γ02 e0 + γ12 e1).

...

• Continue the process up to xk, which involves computing
(γ0k, γ1k, . . . , γ(k−1)k) with γjk = 〈xk, ej〉/〈ej , ej〉 for j = 0, 1, . . . , (k−
1) and then obtaining ek = xk− (γ0k e0 + γ1k e1 + · · ·+ γ(k−1)k ek−1).

Note that ej ⊥ ej′ for j 6= j′. It is interesting and insightful to take a
few observations, as listed below. First, the slope estimate obtained by
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regressing y on ek without intercept is the same as the LS slope estimate
for xk in multiple linear model of y versus (x0,x1, . . . ,xk). That is,

β̂k =
〈y, ek〉
〈ek, ek〉 =

〈y,ek〉
‖ ek ‖2 . (3.60)

This can be verified by using the fact that ej ’s form an orthogonal basis for
the column space of X and xk is only involved in ek = xk −

∑k−1
j=0 γjkej ,

with coefficient 1.
Secondly, since (e0, e1, . . . ek−1) spans the same subspace as

(x0,x1, . . . ,xk−1) does, the residual vector ek is identical to the residual
vector obtained by regressing xk versus (x0,x1, . . . ,xk−1). This is the result
that motivates the partial regression plots, in which the residuals obtained
from regressing y on (x0,x1, . . . ,xk−1) are plotted versus ek.

Thirdly, the same results clearly hold for any one of the predictors
if one rearranges it to the last position. The general conclusion is that
the j-th slope β̂j can be obtained by fitting a simple linear regression
of y on the residuals obtained from regressing xj on other predictors
(x0,x1, . . . ,xj−1,xj+1, . . . ,xk). Thus, β̂j can be interpreted as the addi-
tional contribution of xj on y after xj has been adjusted for other predic-
tors. Furthermore, from (3.60) the variance of β̂k is

Var(β̂k) =
σ2

‖ ek ‖2 . (3.61)

In other words, ek, which represents how much of xp is unexplained by
other predictors, plays an important role in estimating βk.

Fourthly, if xp is highly correlation with some of the other predictors, a
situation to which multicolinearity is referred, then the residual vector ek

will be close to zero in length |e|. From (3.60), the estimate β̂k would be
very unstable. From (3.61), the precision of the estimate would be poor as
well. The effect due to multicolinearity is clearly true for all predictors in
the correlated predictors.

3.19.2 QR Decomposition and LSE

The Gram-Schmidt algorithm can be represented in matrix form. It can be
easily verified that

γjl =
〈xl, ej〉
〈ej , ej〉 =

{
1 if j = l

0 if j < l
(3.62)
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for j, l = 0, 1, . . . , k. Denoting

Γ = (γjl) =




1 γ01 γ02 · · · γ0(k−1) γ0k

0 1 γ12 · · · γ1(k−1) γ1k

...
...

...
...

...
0 0 0 · · · 1 γ(k−1)k

0 0 0 · · · 0 1




and E = (e0, e1, . . . , ek),

we have

X = EΓ = (ED−1)(DΓ) = QR, (3.63)

where D = diag(djj) with djj =‖ ej−1 ‖ for j = 1, . . . , (k + 1). The form
given in (3.63) is the so-called QR decomposition of X. The matrix

Q = ED−1 (3.64)

is an orthogonal matrix of dimension n × (k + 1) satisfying Q′Q = I and
the matrix

R = DΓ (3.65)

is a (k + 1)× (k + 1) upper triangular matrix.
Using the decomposition in (3.63), the normal equations becomes

XtXβ = Xty

=⇒ R′QtQRβ = R′Q′y

=⇒ Rβ = Qy, (3.66)

which are easy to solve since R is upper triangular. This leads to the LSE

β̂ = R−1Q′y. (3.67)

Its variance-covariance matrix can be expressed as

Cov(β̂) = σ2 · (XtX)−1 = σ2 · (RtR)−1 = σ2 ·R−1(Rt)−1. (3.68)

To compute, R−1 is needed. Since R is upper triangular, R−1 = W can
be easily obtained with back-substitution in the system of linear equations

RW = I. (3.69)

Various other desired quantities in linear regression including the F

test statistic for linear hypotheses can also be computed using the QR
decomposition. For example, the predicted vector is

ŷ = Xβ̂ = QQty,

the residual vector is

e = y − ŷ = (I−QQt)y

and the sum of squared errors (SSE) is

SSE = ete = yt(I−QQt)y =‖ y ‖2 − ‖ Qty ‖2 .
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3.20 Analysis of Regression Residual

3.20.1 Purpose of the Residual Analysis

Definition 3.5. The residual of the linear regression model y = Xβ + ε

is defined as the difference between observed response variable y and the
fitted value ŷ, i.e., e = y − ŷ.

The regression error term ε is unobservable and the residual is observ-
able. Residual is an important measurement of how close the calculated
response from the fitted regression model to the observed response. The
purposes of the residual analysis are to detect model mis-specification and
to verify model assumptions. Residuals can be used to estimate the er-
ror term in regression model, and the empirical distribution of residuals
can be utilized to check the normality assumption of the error term (QQ
plot), equal variance assumption, model over-fitting, model under-fitting,
and outlier detection. Overall, residual analysis is useful for assessing a
regression model.

Simple statistical properties of the regression residual can be discussed.
The ith residual of the linear regression model can be written as

ei = yi − ŷi = yi − xib = yi − xi(X
′
X)−1X

′
y.

Regression residual can be expressed in a vector form

e = y −X(X
′
X)−1X

′
y = (I −X(X

′
X)−1X

′
)y = (I −H)y, (3.70)

where H = X(X
′
X)−1X

′
is called the HAT matrix. Note that I −H is

symmetric and idempotent, i.e., I −H = (I −H)2. The covariance matrix
of the residual e is given by:

Cov(e) = (I −H)Var(y)(I −H)
′
= (I −H)σ2.

Denote the hat matrix H = (hij) we have

Var(ei) = (1− hii)σ2

and

Cov(ei, ej) = −hijσ
2.

The HAT matrix contains useful information for detecting outliers and
identifying influential observations.
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Table 3.7 United States Population Data (in Millions)

Year Population Year Population Year Population Year Population

1790 3.929 1800 5.308 1810 7.239 1820 9.638
1830 12.866 1840 17.069 1850 23.191 1860 31.443
1870 39.818 1880 50.155 1890 62.947 1900 75.994
1910 91.972 1920 105.710 1930 122.775 1940 131.669
1950 151.325 1960 179.323 1970 203.211

3.20.2 Residual Plot

A plot of residuals ei’s against the fitted values ŷi’s is residual plot, which
is a simple and convenient tool for regression model diagnosis. The resid-
uals evenly distributed on both sides of y = 0 imply that the assumptions
E(ε) = 0 and constant variance Var(εi) = σ2 are appropriate. A curva-
ture appearance in residual plot implies that some higher order terms in
regression model may be missing. A funnel shape of residual plot indicates
heterogeneous variance and violation of model assumption Var(ε) = σ2.
In addition, periodical and curvature residuals may indicate that the pos-
sible regression model may be piecewise and some higher order terms in
the model may be missing. The following Fig. 3.3 illustrate different sit-
uations of the residuals in regression model. Figure (a) displays residuals
evenly distributed about 0, (b) shows residuals with uneven variances, (c)
displays residuals with curvature pattern, and (d) displays periodic and
curvature residuals. The classical regression model assumptions E(ε) = 0
and Var(εi) = σ2 are satisfied only when residuals are evenly distributed
about 0. The other residual plots imply some deviations from the classical
regression model assumptions. When model assumptions are violated the
model is no longer valid and statistical inference based on model is not
reliable anymore.
We now discuss how to use residual plot to improve regression model. The
illustrative example is the regression model of the populations of the United
States from Year 1790 to Year 1970. We will show how to improve the
regression model based on residual diagnosis. The population data (in
millions) are presented in Table 3.7.

Example 3.2. First, we fit the data to the simple linear regression model

Population = β0 + β1Year + ε.

The estimates of the model parameters are presented in Table 3.8. We
then compute the residuals and plot the residuals against the fitted values
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Fig. 3.3 Various Shapes of Residual Plots

ŷ for regression model Population = β0 + β1Year + ε. The residual plot is
presented in Fig. 3.4 (b). The curvature appearance of the residual plot
implies that the proposed regression model may be under-fitted. i.e., some
necessary higher order terms in the regression model may be missing.
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Table 3.8 Parameter Estimates for Model Population=Year

MODEL TYPE DEPVAR RMSE Intercept year

MODEL1 PARMS population 18.1275 -1958.37 1.0788
MODEL1 STDERR population 18.1275 142.80 0.0759
MODEL1 T population 18.1275 -13.71 14.2082
MODEL1 PVALUE population 18.1275 0.00 0.0000
MODEL1 L95B population 18.1275 -2259.66 0.9186
MODEL1 U95B population 18.1275 -1657.08 1.2390

Table 3.9 Parameter Estimates for Model Population=Year+Year2

TYPE DEPVAR RMSE Intercept Year Year2

PARMS population 2.78102 20450.43 -22.7806 0.0063
STDERR population 2.78102 843.48 0.8978 0.0002
T population 2.78102 24.25 -25.3724 26.5762
PVALUE population 2.78102 0.00 0.0000 0.0000
L95B population 2.78102 18662.35 -24.684 0.0058
U95B population 2.78102 22238.52 -20.8773 0.0069

The curvature of a quadratic appearance in the residual plot suggests that
a quadratic term in the model may be missing. We then add a term Y ear2

into the model and fit the data to the following regression model:

Population = β0 + β1Year + β2Year2 + ε.

The estimates of the model parameters are presented in Table 3.9. The
residual plot of above regression model is presented in Fig. 3.4 (c) and the
shape of the residual plot is clearly better than the residual plot Fig. 3.4
(b), since residuals become more evenly distributed on both sides of y = 0.
If we take a closer look at the residual plot, we still observe that two
residuals, which are at years 1940 and 1950, are far from the line y = 0.
We know that in the history these are the years during the World War II.
We think there might be a shift of populations due to the war. So we try
to add a dummy variable z into the model. The dummy variable z takes
value 1 at years 1940 and 1950, and 0 elsewhere. The regression model with
mean shift term z can be written as

Population = β0 + β1Year + β2Year2 + β3z + ε.

We then fit the US population data to the above model. The estimates of
the model parameters are presented in Table 3.10. The residual plot for
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Fig. 3.4 Residual Plots of the Regression Model of the US Population

this model is presented in Fig 3.4 (d) and it is clearly improved, since the
residuals are much more evenly distributed on both sides of y = 0, including
the residuals at Years 1940 and 1950.
The SAS program for generating analysis results above is provided below
for illustrative purpose.
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Table 3.10 Parameter Estimates for Regression Model Population=β0 +β1 Year+
β2 Year2+z

TYPE DEPVAR RMSE Intercept Year Year2 z

PARMS population 0.93741 20982.75 -23.3664 0.0065 -8.7415
STDERR population 0.93741 288.25 0.3071 0.0001 0.7793

T population 0.93741 72.79 -76.0838 79.5883 -11.2170
PVALUE population 0.93741 0.00 0.0000 0.0000 0.0000

L95B population 0.93741 20368.37 -24.0210 0.0063 -10.4026
U95B population 0.93741 21597.14 -22.7118 0.0067 -7.0805

data pop; set pop;

yyear=year*year;

if year in (1940, 1950) then z=1;

else z=0;

run;

proc reg data=pop outest=out1 tableout;

model population=year;

output out=out2

p=yhat r=yresid student=sresid;

run;

proc reg data=pop outest=out3 tableout;

model population=year yyear;

output out=out4

p=yhat r=yresid student=sresid;

run;

proc reg data=pop outest=out5 tableout;

model population=year yyear z;

output out=out6

p=yhat r=yresid student=sresid;

run;

proc gplot data=out2; symbol v=dot h=1;

plot yresid*yhat/caxis=red ctext=blue vref=0;

title "population=year";

proc gplot data=out4; symbol v=dot h=1;



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

102 Linear Regression Analysis: Theory and Computing

plot yresid*yhat/caxis=red ctext=blue vref=0;

title "population=year+year*year";

proc gplot data=out6; symbol v=dot h=1;

plot yresid*yhat/caxis=red ctext=blue vref=0;

title "population=year+year*year +Z";

run;

The above regression analysis of the US population over years can be per-
formed using the free software R. One advantage of software R over SAS is
that R generates regression diagnosis graphs relatively easily. We present
the following R code that perform the regression analysis of the US pop-
ulation over years and generate all regression diagnosis plots in postscript
format for different regression models.

year<-c(1790,1800,1810,1820,1830,1840,1850,1860,1870,1880,

1890,1900,1910,1920,1930,1940,1950,1960,1970)

pop<-c(3.929,5.308,7.239,9.638,12.866,17.069,23.191,31.443,

39.818,50.155, 62.947,75.994,91.972,105.710,122.775,

131.669,151.325,179.323,203.211)

postscript("C:\\uspop.eps",horizontal=FALSE, onefile= FALSE,

print.it=FALSE)

par(mfrow=c(2, 2))

plot(pop~year, pch=20, font=2, font.lab=2,

ylab="population",xlab="Year",

main="populations by Year")

fit<-lm(pop~year)

fitted<-fit$fitted

resid<-fit$residual

plot(fitted, resid, pch=20, cex=1.5, font=2, font.lab=2,

ylab="Residual", xlab="Fitted Values",

main="Population=Year")

yyear<-year*year

fit1<-lm(pop ~ year + yyear)

fitted1<-fit1$fitted

resid1<-fit1$residual
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plot(fitted1, resid1, pch=20, cex=1.5, font=2, font.lab=2,

ylab="Residual", xlab="Fitted Values",

main="population=Year+Year^2")

z<-ifelse((year==1940)|(year==1950), 1, 0)

fit2<-lm(pop ~ year + yyear +z)

fitted2<-fit2$fitted

resid2<-fit2$residual

plot(fitted2, resid2, pch=20, cex=1.5, font=2, font.lab=2,

ylab="Residual", xlab="Fitted Values",

main="population=Year+Year^2+ Z")

dev.off()

3.20.3 Studentized Residuals

Without normalization the usual residual ei = yi − ŷi is subject to the
scale of the response yi. It is inconvenient when several regression models
are discussed together. We then consider the normalized residual. Since
Var(ei) = (1− hii)σ2 the normalized regression residual can be defined as

ri =
ei

s
√

1− hii

. (3.71)

This normalized residual is called the studentized residual. Note that σ is
unknown and it can be estimated by s. The studentized residual is scale-
free and can be used for checking model assumption. Also it can be used for
model diagnosis. If several regression models need to be compared the scale-
free studentized residuals is a better measurement for model comparison.

3.20.4 PRESS Residual

The PRESS residual is the leave-one-out residual. To obtain the PRESS
residual we fit the regression model without using the ith observation and
calculate the fitted value from that model

ŷi,−i = xib−i,

where b−i is the least squares estimate of regression parameters without
using the ith observation. ŷi,−i is the fitted value calculated from the re-
gression model without using the ith observation. The ith PRESS residual
is defined as

ei,−i = yi − ŷi,−i = yi − xib−i. (3.72)
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The PRESS residual is the measurement of influential effect of the ith obser-
vation on the regression model. If the ith observation has a small influence
on the regression model then ŷi should be fairly close to ŷi,−i, therefore,
the PRESS residual ei,−i should be close to the usual residual ei. In order
to discuss the PRESS residual and establish the relationship between usual
the residual ei and the PRESS residual ei,−i we first introduce the following
the theorem (see Rao, 1973).

Theorem 3.16. Let A be a nonsingular square p × p matrix and z be a
p-dimensional column vector. The matrix (A− zz

′
)−1 is given by

(A− zz
′
)−1 = A−1 +

A−1zz
′
A−1

1− z′A−1z
. (3.73)

The proof of the theorem is to directly show that A − zz
′

multiply the
matrix on the right side of the above formula yields an identity matrix. This
theorem will be used later to establish the relationship between the PRESS
residual and the ordinary residual. For regression model y = Xβ +ε, write
X as (1,x2, x2, · · · , xp), where xi is an n-dimensional vector. It is easy to
verify that

X
′
X =




n 1
′
x1 1

′
x2 · · · 1

′
xp

1
′
x1 x

′
1x1 x

′
1x2 · · · x

′
1xp

1
′
x2 x

′
1x1 x

′
2x2 · · · x

′
2xp

· · ·

1
′
xp x

′
2xp x

′
3x2 · · · x

′
pxp




=




n
∑

j x1j

∑
j x2i · · · ∑

j xpj

∑
j x1j

∑
j x2

1j

∑
j x1jx2j · · · ∑

j x1jxpj

∑
j x2j

∑
j x2jx2j

∑
j x2

2j · · · ∑
j x2jxpj

· · ·
∑

j xpj

∑
j xpjxpj

∑
j xpjx2j · · · ∑

j x2
pj




.
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Remove the ith observation from X and perform the matrix multiplication
of X

′
−iX−i we have

X
′
−iX−i =




n− 1
∑

j 6=i x1j

∑
j 6=i x2j · · · ∑

j 6=i xpj

∑
j 6=i x1j

∑
j 6=i x2

1j

∑
j 6=i x1jx2j · · · ∑

j 6=i x1jxpj

∑
j 6=i x2j

∑
j 6=i x2jx2j

∑
j 6=i x2

2j · · · ∑
j 6=i x2jxpj

· · ·
∑

j 6=i xpj

∑
j 6=i xpjxpj

∑
j 6=i xpjx2j · · · ∑

j 6=i x2
pj




= X
′
X − xix

′
i.

Thus, we establish that

X
′
−iX−i = X

′
X − xix

′
i.

Using the formula above and set A = X
′
X we find

(X
′
−iX−i)−1 = (X

′
X − xjx

′
i)
−1

= (X
′
X)−1 +

(X
′
X)−1xix

′
i(X

′
X)−1

1− x
′
i(X

′
X)−1xi

= (X
′
X)−1 +

(X
′
X)−1xix

′
i(X

′
X)−1

1− hii

The following theorem gives the relationship between the PRESS residual
and the usual residual.

Theorem 3.17. Let regression model be y = Xβ + ε. The relationship
between the ith PRESS residual ei,−i and the ordinary ith residual ei is
given by

ei,−i =
ei

1− hii
(3.74)

Var(ei,−i) =
σ2

1− hii
. (3.75)
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Proof. For the regression model without using the ith observation the
residual is

ei,−i = yi − x
′
ib−i = yi − x

′
i(X

′
−iX−i)−1X

′
−iy−i

= yi − x
′
i

[
(X

′
X)−1 +

(X
′
X)−1xix

′
i(X

′
X)−1

1− hii

]
X

′
−iy−i

=
(1− hii)yi − (1− hii)x

′
i(X

′
X)−1X

′
−iy−i − hiix

′
i(X

′
X)−1X

′
−iy−i

1− hii

=
(1− hii)yi − x

′
i(X

′
X)−1X

′
−iy−i

1− hii

Note that X
′
−iy−i + xiyi = X

′
y we have

ei,−i =
(1− hii)yi − x

′
i(X

′
X)−1(X

′
y − xiyi)

1− hii

=
(1− hii)yi − x

′
i(X

′
X)−1X

′
y + x

′
i(X

′
X)−1xiyi

1− hii

=
(1− hii)yi − ŷi + hiiyi

1− hii
=

yi − ŷi

1− hii
=

ei

1− hii

For variance of PRESS residual Var(ei,−i) we have

Var(ei,−i) = Var(ei)
1

(1− hii)2
= [σ2(1− hii)]

1
(1− hii)2

=
σ2

1− hii ¤

The ith standardized PRESS residual is

ei,−i

σi,−i
=

ei

σ
√

1− hii

. (3.76)

3.20.5 Identify Outlier Using PRESS Residual

The standardized PRESS residual can be used to detect outliers since it is
related to the ith observation and is scale free. If the ith PRESS residual
is large enough then the ith observation may be considered as a potential
outlier. In addition to looking at the magnitude of the ith PRESS residual,
according to the relationship between the PRESS residual ei,−i and the
regular residual ei, the ith observation may be a potential outlier if the
leverage hii is close to 1.
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We now discuss how to deal with outlier in regression model. First, what is
an outlier? An outlier is an observation at which the fitted value is not close
enough to the observed response. i.e., there is breakdown in the model at
the ith observation such that the location of the response is shifted. In this
situation, the ith data point could be a potential outlier. To mathematically
formulate this mean shift or model breakdown, we can write E(εi) = ∆ 6= 0.
i.e., there is a non-zero mean shift in error term at the ith observation. If
we believe that the choice and model assumptions are appropriate, it is
suspectable that the ith observation might be an outlier in terms of the
shift of the response from the model at that observation.

Another aspect of an outlier is that at the ith data point the Var(ε) exceeds
the error variance at other data points. i.e., there might be an inflation in
variance at the ith observation. If the equal variance assumption is appro-
priate we may consider the ith observation as an outlier if the variance is
inflated at the ith observation. So, outlier could be examined by checking
both the mean response shift and the variance inflation at the ith data
point. If equal variance assumption is no longer appropriate in the regres-
sion model we can use the generalized least squares estimate where the
equal variance assumption is not required. The generalized least squares
estimate will be discussed later.

A convenient test statistic used to detect outlier in regression model is the
ith PRESS residual

ei,−i = yi − ŷi,−i.

If there is a mean shift at the ith data point, then we have

E(yi − ŷi,−i) = E(e)i,−i = ∆i > 0.

Similarly, if there is a variance inflation at the ith data point we would like
to use the standardized PRESS residual

ei,−i

σi,−i
=

ei

σ
√

1− hii

to detect a possible outlier. Since σ is unknown, we can replace σ by its
estimate s to calculate the standardized PRESS residual. Note that in the
presence of a mean shift outlier s is not an ideal estimate of true standard
deviation of σ. If we consider the situation where there is a mean shift
outlier, the sample standard deviation s is biased upward, and is not an
ideal estimate of standard error σ. One way to cope with it is to leave the
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ith observation out and calculate the leave-one-out sum of squared residuals
s−i. It can be shown that the relationship between s−i and regular s is

s−i =

√
(n− p)s2 − e2

i /(1− hii)
n− p− 1

. (3.77)

Replacing σ with s−i we can construct a test statistic

ti =
yi − ŷi

s−i

√
1− hii

∼ tn−p−1. (3.78)

Under the null hypothesis H0 : ∆i = 0, the above test statistic has the
centralized t distribution with degrees of freedom n− p− 1, where n is the
sample size and p + 1 is the total number of parameters in the regression
model. This test statistic can be used to test the hypothesis H0 : ∆i = 0
versus the alternative H1 : ∆i 6= 0. The above statistic is often called the
R-student statistic. It tends larger if the ith data point is a mean shift
outlier. Note that the two-tailed t-test should be used to test a mean shift
outlier using the R-student statistic.

The R-student statistic can also be used to test variance inflation at the
ith observation. If there is inflation in variance at the ith observation we
should have Var(εi) = σ2 + σ2

i . Here σ2
i represents the increase in variance

at the ith data point. The hypothesis may be defined as H0 : σ2
i = 0 versus

H1 : σ2
i 6= 0. Note that the two-tailed t-test should be used as well.

3.20.6 Test for Mean Shift Outlier

Example 3.3. The coal-cleansing data will be used to illustrate the mean
shift outlier detection in multiple regression. The data set has three inde-
pendent variables. Variable x1 is the percent solids in the input solution;
x2 is the pH value of the tank that holds the solution; and x3 is the flow
rate of the cleansing polymer in ml/minute. The response variable y is the
measurement of experiment efficiency. The data set is presented in Table
3.11.

We first fit the coal-cleansing data to the multiple regression model:

y = β0 + β1x1 + β2x2 + β3x3 + ε.

The SAS procedure REG is used to calculate the parameter estimates, HAT
matrix, ordinary residuals, and R-student residuals for the above regression
model. The program is presented as follows:
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Table 3.11 Coal-cleansing Data

Experiment x1 x2 x3 y

1 1.5 6.0 1315 243
2 1.5 6.0 1315 261
3 1.5 9.0 1890 244
4 1.5 9.0 1890 285
5 2.0 7.5 1575 202
6 2.0 7.5 1575 180
7 2.0 7.5 1575 183
8 2.0 7.5 1575 207
9 2.5 9.0 1315 216
10 2.5 9.0 1315 160
11 2.5 6.0 1890 104
12 2.5 6.0 1890 110

proc reg data=coal outest=out1 tableout;

model y=x1 x2 x3;

output out=out2

p=yhat r=resid h=hat rstudent=Rresid;

run;

The fitted regression model is found to be

ŷ = 397.087− 110.750x1 + 15.5833x2 − 0.058x3.

The estimates of the regression parameters and the corresponding P-values
are presented in Table 3.12.

Table 3.12 Parameter Estimates for Regression Model for Coal–
Cleansing Data

Type RMSE Intercept x1 x2 x3

PARMS 20.8773 397.087 -110.750 15.5833 -0.05829
STDERR 20.8773 62.757 14.762 4.9208 0.02563
T 20.8773 6.327 -7.502 3.1668 -2.27395
PVALUE 20.8773 0.000 0.000 0.0133 0.05257
L95B 20.8773 252.370 -144.792 4.2359 -0.11741
U95B 20.8773 541.805 -76.708 26.9308 0.00082

Before the analysis there was suspicion by the experimental engineer that
the 9th data point was keyed in erroneously. We first fit the model with-
out deleting the 9th data point. The fitted responses, residuals, values of
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diagonal elements in the HAT matrix, and values of the R-student statistic
associated with each observation are calculated and listed in Table 3.13.
The largest residual is the 9th residual (e9 = 32.192) and the correspond-
ing R-student statistic value is 2.86951, which implies that the 9th residual
is greater than zero statistically. This finding would support the suspicion
that the 9th data point was originally keyed in incorrectly.

Table 3.13 Residuals

Experiment yi ŷi ei hii ti

1 243 247.808 -4.8080 0.45013 -0.29228
2 261 247.808 13.1920 0.45013 0.83594
3 244 261.040 -17.0400 0.46603 -1.13724
4 285 261.040 23.9600 0.46603 1.76648
5 202 200.652 1.3480 0.08384 0.06312
6 180 200.652 -20.6520 0.08384 -1.03854
7 183 200.652 -17.6520 0.08384 -0.86981
8 207 200.652 6.3480 0.08384 0.29904
9∗ 216 183.808 32.1920∗ 0.45013 2.86951∗

10 160 183.808 -23.8080 0.45013 -1.71405
11 104 103.540 0.4600 0.46603 0.02821
12 110 103.540 6.4600 0.46603 0.40062

Note that the statistical analysis only confirms that the 9th data point does
not fit the proposed regression model well. Therefore, it may be a potential
mean shift outlier. The decision on whether or not keeping this data point in
the model has to be made jointly by regression model diagnosis, rechecking
the experimental data, and consulting with the engineer who collected the
data.

In the example above the mean shift outlier is tested individually. If there
are multiple mean shift outliers, we can test these mean shift outliers simul-
taneously. To do so the threshold is calculated by the t distribution with
degrees of freedom n−p−1 and test level α is chosen to be 0.025/m, where
n=total number of observations, p + 1=number of regression parameters
in the model, and m is the number of potential outliers that need to be
tested. For small data set one may choose m = n. The Manpower data will
be used to illustrate the simultaneous test for multiple mean shift outliers.
The data were collected from 25 office sites by U.S. Navy. The purpose
of the regression analysis is to determine the needs for the manpower in
Bachelor Officers Quarters. The 7 independent variables and the response
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variable y in the data set are

x1: Average daily occupancy
x2: Monthly average numbers of check-ins
x3: Weekly hours of service desk operation
x4: Square feet of common use area
x5: Number of building wings
x6: Operational berthing capacity
x7: Number of rooms
y : Monthly man-hours

The data set is presented in Table 3.14:

Table 3.14 Manpower Data

Site x1 x2 x3 x4 x5 x6 x7 y

1 2.00 4.00 4 1.26 1 6 6 180.23
2 3.00 1.58 40 1.25 1 5 5 182.61
3 16.60 23.78 40 1.00 1 13 13 164.38
4 7.00 2.37 168 1.00 1 7 8 284.55
5 5.30 1.67 42.5 7.79 3 25 25 199.92
6 16.50 8.25 168 1.12 2 19 19 267.38
7 25.89 3.00 40 0 3 36 36 999.09
8 44.42 159.75 168 0.60 18 48 48 1103.24
9 39.63 50.86 40 27.37 10 77 77 944.21

10 31.92 40.08 168 5.52 6 47 47 931.84
11 97.33 255.08 168 19.00 6 165 130 2268.06
12 56.63 373.42 168 6.03 4 36 37 1489.50
13 96.67 206.67 168 17.86 14 120 120 1891.70
14 54.58 207.08 168 7.77 6 66 66 1387.82
15 113.88 981.00 168 24.48 6 166 179 3559.92
16 149.58 233.83 168 31.07 14 185 202 3115.29
17 134.32 145.82 168 25.99 12 192 192 2227.76
18 188.74 937.00 168 45.44 26 237 237 4804.24
19 110.24 410.00 168 20.05 12 115 115 2628.32
20 96.83 677.33 168 20.31 10 302 210 1880.84
21 102.33 288.83 168 21.01 14 131 131 3036.63
22 274.92 695.25 168 46.63 58 363 363 5539.98
23 811.08 714.33 168 22.76 17 242 242 3534.49
24 384.50 1473.66 168 7.36 24 540 453 8266.77
25 95.00 368.00 168 30.26 9 292 196 1845.89

Data Source: Procedure and Analyses for Staffing Standards: Data Re-
gression Analysis handbook (San Diego, California: Navy Manpower and
Material Analysis Center, 1979).
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The SAS program for the simultaneous outlier detection is provided as
follows. In this example we choose m = n = 25 since data set is not too
large and we can test all observations simultaneously in the data set.

proc reg data=manpow outest=out1 tableout;

model y=x1 x2 x3 x4 x5 x6 x7;

output out=out2

p=yhat r=e h=h RSTUDENT=t ;

run;

data out2; set out2;

cutoff=-quantile(’T’, 0.025/50, 25-8-1);

if abs(t)> cutoff then outlier="Yes";

else outlier="No";

run;

The output with information on multiple mean shift outliers is presented
in Table 3.15. Note that in this example we tested all data points (n = 25)
simultaneously. The cutoff for identifying multiple mean shift outlier is
α/2n = 0.025/25 quantile from the t distribution with degrees of freedom
n − 1 − number of parameters = 25 − 1 − 8 = 16. In the output, “No”
indicates that the corresponding observation is not a mean shift outlier and
“Yes” means a mean shift outlier.

In Table 3.15, we detect outlier using all data points as a whole. This
approach is based on rather conservative Bonferroni inequality, i.e., set the
critical value to be tα/2n,n−p−1, where n is the total number of observations
to be tested and p is the total number of parameters in the regression
model. We use this approach in situation where individual outlier detection
and residual plot do not provide us enough information on model fitting.
Detection of outlier as a whole may tell us that even individually there
is no evidence to identify an outlier, but as compare to other residuals in
the overall data set, one residual may be more extreme than other. The
idea behind this approach is that when we fit data to a model we would
expect the model can provide satisfactory fitted values for all data points
as a whole.

In this example we set α = 0.05, n = 25, and p = 8. The cutoff for the test
statistic is

−tα/2n,n−p−1 = −t0.05/50,16 = 3.686155.
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Table 3.15 Simultaneous Outlier Detection

Obs yi ŷi ei hii ti Outlier

1 180.23 209.98 -29.755 0.25729 -0.07360 No
2 182.61 213.80 -31.186 0.16088 -0.07257 No
3 164.38 360.49 -196.106 0.16141 -0.45944 No
4 284.55 360.11 -75.556 0.16311 -0.17621 No
5 199.92 380.70 -180.783 0.14748 -0.41961 No
6 267.38 510.37 -242.993 0.15890 -0.57043 No
7 999.09 685.17 313.923 0.18288 0.75320 No
8 1103.24 1279.30 -176.059 0.35909 -0.47199 No
9 944.21 815.47 128.744 0.28081 0.32464 No

10 931.84 891.85 39.994 0.12954 0.09139 No
11 2268.06 1632.14 635.923 0.12414 1.55370 No
12 1489.50 1305.18 184.323 0.20241 0.44258 No
13 1891.70 1973.42 -81.716 0.08020 -0.18179 No
14 1387.82 1397.79 -9.966 0.09691 -0.02235 No
15 3559.92 4225.13 -665.211 0.55760 -2.51918 No
16 3115.29 3134.90 -19.605 0.40235 -0.05406 No
17 2227.76 2698.74 -470.978 0.36824 -1.33105 No
18 4804.24 4385.78 418.462 0.44649 1.25660 No
19 2628.32 2190.33 437.994 0.08681 1.00741 No
20 1880.84 2750.91 -870.070 0.36629 -2.86571 No
21 3036.63 2210.13 826.496 0.07039 2.05385 No
22 5539.98 5863.87 -323.894 0.78537 -1.60568 No
23 3534.49 3694.77 -160.276 0.98846 -5.24234 Yes
24 8266.77 7853.50 413.265 0.87618 3.20934 No
25 1845.89 1710.86 135.029 0.54674 0.42994 No

We then compare the absolute value of each ti with this cutoff to determine
whether the corresponding observation is a possible outlier. Assuming that
the regression model is correctly specified, the comparison between this
cutoff and each observation in the data set alerts that the 23th observation
might be an outlier.

The following example demonstrates the detection of multiple mean shift
outliers. The magnitude of mean shift at different data point may be dif-
ferent. The technique for multiple outlier detection is to create variables
which take value 1 at these suspicious data point and 0 elsewhere. We need
to create as many such columns as the number of suspicious outliers if we
believe there are different mean shifts at those data points. This way, we
can take care of different magnitudes of mean shift for all possible outliers.
If we think some outliers are of the same mean shift then for these outlier
we should create a dummy variable that takes value 1 at these outliers and
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0 elsewhere.

In the following example, the data points with a larger value of variable
x2 are suspicious and we would like to consider multiple data points 15,
18, 22, 23, and 24 as possible multiple outliers. We first create 5 dummy
variables D1, D2, D3, D4, and D5 that takes value 1 at observations 15,
18, 22, 23, and 24, and value 0 for all other observations in the data set.
We then include these dummy variables in the regression model. The SAS
program for detecting the mean shift outliers is provided below.

data manpow; set manpow;

if _n_=15 then D15=1; else D15=0;

if _n_=18 then D18=1; else D18=0;

if _n_=22 then D22=1; else D22=0;

if _n_=23 then D23=1; else D23=0;

if _n_=24 then D24=1; else D24=0;

run;

Proc reg data=manpow;

model y=x1 x2 x3 x4 x5 x6 x7 D15 D18 D22 D23 D24;

run;

The output is presented in Table 3.16. The identified outlier is the 23th
observation since the corresponding P-value is 0.0160 < 0.05. Note that this
time we identified the same outlier via multiple outlier detection approach.

Table 3.16 Detection of Multiple Mean Shift Outliers

Variable df bi std ti P > |t|

Intercept 1 142.1511 176.0598 0.81 0.4351
x1 1 23.7437 8.8284 2.69 0.0197
x2 1 0.8531 0.8608 0.99 0.3412
x3 1 -0.2071 1.7234 -0.12 0.9063
x4 1 9.5700 16.0368 0.60 0.5618
x5 1 12.7627 21.7424 0.59 0.5681
x6 1 -0.2106 6.9024 -0.03 0.9762
x7 1 -6.0764 12.5728 -0.48 0.6376
Data15 1 723.5779 914.0654 0.79 0.4440
Data18 1 139.5209 611.3666 0.23 0.8233
Data22 1 -592.3845 900.1980 -0.66 0.5229
Data23∗ 1 -15354 5477.3308 -2.80 0.0160∗

Data24 1 262.4439 1386.053 0.19 0.8530
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3.21 Check for Normality of the Error Term in Multiple
Regression

We now discuss how to check normality assumption on error term of a
multiple regression model. It is known that the sum of squared residuals,
divided by n−p, is a good estimate of the error variance, where n is the total
number of observations and p is the number of parameters in the regression
model, The residual vector in a multiple linear regression is given by

e = (I −H)y = (I −H)(Xβ + ε) = (I −H)ε,

where H is the HAT matrix for this regression model. Each component

ei = εi −
n∑

j=1

hijεj . Therefore, the normality of residual is not simply the

normality of the error term in the multiple regression model. Note that

Cov(e) = (I −H)σ2(I −H)
′
= (I −H)σ2.

Hence we can write Var(ei) = (1 − hii)σ2. If sample size is much larger
than the number of the model parameters, i.e., n >> p, or sample size n is
large enough, hii will be small as compared to 1, then Var(ei) ≈ σ2. Thus,
a residual in multiple regression model behaves like error if sample size is
large. However, it is not true for small sample size. We point out that
it is unreliable to check normality assumption using the residuals from a
multiple regression model when sample size is small.

3.22 Example

In this section we provide some illustrative examples of multiple regression
using SAS. The following SAS program is for calculating confidence inter-
vals on regression mean and regression prediction. The Pine Tree data set
used in this example is presented in Table 3.17.

The corresponding estimated of regression parameters for the model
including all independent variables x1, x2, x3 and the model including x3, x2

are presented in Tables 3.18 and 3.19. The confidence intervals on regression
mean and regression prediction for the model including all variables and the
model including x1, x2 are presented in Tables 3.20 and 3.21.
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Table 3.17 Stand Characteristics of Pine Tree
Data

Age HD N MDBH

19 51.5 500 7.0
14 41.3 900 5.0
11 36.7 650 6.2
13 32.2 480 5.2
13 39.0 520 6.2
12 29.8 610 5.2
18 51.2 700 6.2
14 46.8 760 6.4
20 61.8 930 6.4
17 55.8 690 6.4
13 37.3 800 5.4
21 54.2 650 6.4
11 32.5 530 5.4
19 56.3 680 6.7
17 52.8 620 6.7
15 47.0 900 5.9
16 53.0 620 6.9
16 50.3 730 6.9
14 50.5 680 6.9
22 57.7 480 7.9

Data Source: Harold E, et al. “Yield of Old-field
Loblolly Pine Plantations”, Division of Forestry and
Wildlife Resources Pub. FWS-3-72, Virginia Poly-
technic Institute and State University, Blacksburg,
Virginia, 1972.

data pinetree; set pinetree;

x1= HD;

x2=age*N;

x3=HD/N;

run;

proc reg data=pinetree outest=out tableout;

model MDBH=x1 x2 x3/all;

run;

*Calculation of partial sum;

proc reg data=pinetree;

model MDBH=x1 x2 x3;

run;
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Table 3.18 Parameter Estimates and Confidence Intervals Using x1, x2 and x3

MODEL TYPE DEPVAR RMSE Intercept x1 x2 x3

MODEL1 PARMS MDBH 0.29359 3.23573 0.09741 -0.00017 3.4668
MODEL1 STDERR MDBH 0.29359 0.34666 0.02540 0.00006 8.3738
MODEL1 T MDBH 0.29359 9.33413 3.83521 -2.79003 0.4140
MODEL1 PVALUE MDBH 0.29359 0.00000 0.00146 0.01311 0.6844
MODEL1 L95B MDBH 0.29359 2.50085 0.04356 -0.00030 -14.2848
MODEL1 U95B MDBH 0.29359 3.97061 0.15125 -0.00004 21.2185

Table 3.19 Parameter Estimates and Confidence Intervals after Deleting x3

MODEL TYPE DEPVAR RMSE Intercept x1 x2

MODEL1 PARMS MDBH 0.28635 3.26051 0.1069 -0.00019
MODEL1 STDERR MDBH 0.28635 0.33302 0.0106 0.00003
MODEL1 T MDBH 0.28635 9.79063 10.1069 -5.82758
MODEL1 PVALUE MDBH 0.28635 0.00000 0.0000 0.00002
MODEL1 L95B MDBH 0.28635 2.55789 0.0846 -0.00026
MODEL1 U95B MDBH 0.28635 3.96313 0.1292 -0.00012

proc reg data=pinetree outest=out tableout;

model MDBH=x1 x2;

run;

*Calculate fitted values and residuals;

proc reg data=pinetree;

model MDBH=x1 x2 x3;

output out=out p=yhat r=yresid student=sresid

LCLM=L_mean UCLM=U_mean

LCL=L_pred UCL=U_pred;

run;

*Calculate fitted values and residuals after deleting X3;

proc reg data=pinetree;

model MDBH=x1 x2;

output out=out p=yhat r=yresid student=sresid

LCLM=L_mean UCLM=U_mean

LCL=L_pred UCL=U_pred;

run;

If collinearity exists the regression analysis become unreliable. Although
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Table 3.20 Confidence Intervals on Regression Mean and Prediction Without Deletion

Obs MDBH yhat Lmean Umean Lpred Upred yresid sresid

1 7.0 7.00509 6.69973 7.31046 6.31183 7.69835 -0.00509 -0.01991
2 5.0 5.29011 4.99935 5.58088 4.60316 5.97707 -0.29011 -1.11762
3 6.2 5.79896 5.53676 6.06115 5.12360 6.47431 0.40104 1.50618
4 5.2 5.55111 5.23783 5.86439 4.85433 6.24789 -0.35111 -1.38404
5 6.2 6.15311 5.92449 6.38173 5.49007 6.81615 0.04689 0.17171
6 5.2 5.07177 4.76288 5.38066 4.37695 5.76659 0.12823 0.50309
7 6.2 6.34891 6.17875 6.51908 5.70369 6.99414 -0.14891 -0.52731
8 6.4 6.21119 5.98863 6.43376 5.55021 6.87217 0.18881 0.68863

Table 3.21 Confidence Intervals on Regression Mean and Prediction After Deleting x3

Obs MDBH yhat Lmean Umean Lpred Upred yresid sresid

1 7.0 6.96391 6.74953 7.17829 6.32286 7.60495 0.03609 0.13482
2 5.0 5.28516 5.00400 5.56632 4.61880 5.95151 -0.28516 -1.12512
3 6.2 5.82751 5.61623 6.03878 5.18749 6.46752 0.37249 1.38853
4 5.2 5.51907 5.26001 5.77813 4.86173 6.17641 -0.31907 -1.23345
5 6.2 6.14741 5.92731 6.36751 5.50443 6.79039 0.05259 0.19721
6 5.2 5.05755 4.76617 5.34892 4.38681 5.72828 0.14245 0.56791
7 6.2 6.34360 6.18055 6.50665 5.71785 6.96935 -0.14360 -0.52082
8 6.4 6.24510 6.10990 6.38030 5.62602 6.86418 0.15490 0.55504

we can identify highly dependent regressors and include one of them in the
regression model to eliminate collinearity. In many applications, often it
is rather difficulty to determine variable deletion. A simple way to com-
bat collinearity is to fit the regression model using centralized data. The
following example illustrates how to perform regression analysis on the cen-
tralized data using SAS. The regression model for centralized data is given
by

yi = β0 + β1(x1i − x̄1) + β2(x2i − x̄2) + εi.

We then create the centralize variables, (x1i − x̄1) and (x2i − x̄2), before
performing the regression analysis. The following SAS code is for regression
analysis using centralized data. The regression parameter estimators using
the centralized data are presented in Table 3.22.

data example;

input yield temp time @@;

datalines;

77 180 1 79 160 2 82 165 1 83 165 2
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85 170 1 88 170 2 90 175 1 93 175 2;

run;

*Centralize data;

proc means data=example noprint;

var temp time;

output out=aa mean=meantemp meantime;

run;

data aa; set aa;

call symput(’mtemp’, meantemp);

call symput(’mtime’, meantime);

run;

*Created centralized data ctime and ctemp;

data example; set example;

ctemp=temp-&mtemp;

ctime=time-&mtime;

run;

proc reg data=example outest=out1 tableout;

model yield=ctemp ctime/noprint;

run;

Table 3.22 Regression Model for Centralized Data

Obs MODEL TYPE DEPVAR RMSE Intercept ctemp ctime

1 MODEL1 PARMS yield 5.75369 84.6250 0.37000 4.1000
2 MODEL1 STDERR yield 5.75369 2.0342 0.36390 4.4568
3 MODEL1 T yield 5.75369 41.6003 1.01678 0.9199
4 MODEL1 PVALUE yield 5.75369 0.0000 0.35591 0.3998
5 MODEL1 L95B yield 5.75369 79.3958 -0.56542 -7.3566
6 MODEL1 U95B yield 5.75369 89.8542 1.30542 15.5566

The final multiple regression model is

yield = 84.625 + 0.37(temperature− 170) + 4.10(time− 1.5)

The test for linear hypothesis is useful in many applications. For linear
regression models, SAS procedures GLM and MIXED are often used. The
following SAS program uses the procedure GLM for testing linear hypoth-
esis. Note that SAS procedure REG can also be used for testing linear
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hypothesis. The variable GROUP in the following example is a class vari-
able. The results of the linear hypothesis tests are presented in Tables 3.23
and 3.24.

data example; input group weight HDL;

datalines;

1 163.5 75.0

...

1 144.0 63.5

2 141.0 49.5

...

2 216.5 74.0

3 136.5 54.5

...

3 139.0 68.0

;

run;

*Regression analysis by group;

proc sort data=example;

by group;

run;

proc reg data=example outest=out1 tableout;

model HDL=weight/noprint;

by group;

run;

*Test for linear hypothesis of equal slopes;

proc glm data=example outstat=out1;

class group;

model HDL=group weight group*weight/ss3;

run;

proc print data=out1;

var _SOURCE_ _TYPE_ DF SS F PROB;

run;

We use the Pine Trees Data in Table 3.17 to illustrate how to test for
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Table 3.23 Test for Equal Slope Among 3 Groups

SOURCE TYPE DF SS F PROB

error error 20 1712.36
group SS3 2 697.20 4.07157 0.03285
weight SS3 1 244.12 2.85124 0.10684
weight*group SS3 2 505.05 2.94946 0.07542

Table 3.24 Regression by Group

Group Model Type Depvar Rmse Intercept Weight

1 MODEL1 PARMS HDL 7.2570 23.054 0.24956
1 MODEL1 STDERR HDL 7.2570 25.312 0.15733
1 MODEL1 T HDL 7.2570 0.911 1.58629
1 MODEL1 PVALUE HDL 7.2570 0.398 0.16377
1 MODEL1 L95B HDL 7.2570 -38.883 -0.13540
1 MODEL1 U95B HDL 7.2570 84.991 0.63452
2 MODEL1 PARMS HDL 10.3881 14.255 0.25094
2 MODEL1 STDERR HDL 10.3881 17.486 0.11795
2 MODEL1 T HDL 10.3881 0.815 2.12741
2 MODEL1 PVALUE HDL 10.3881 0.446 0.07749
2 MODEL1 L95B HDL 10.3881 -28.532 -0.03769
2 MODEL1 U95B HDL 10.3881 57.042 0.53956
3 MODEL1 PARMS HDL 9.6754 76.880 -0.08213
3 MODEL1 STDERR HDL 9.6754 16.959 0.10514
3 MODEL1 T HDL 9.6754 4.533 -0.78116
3 MODEL1 PVALUE HDL 9.6754 0.002 0.45720
3 MODEL1 L95B HDL 9.6754 37.773 -0.32458
3 MODEL1 U95B HDL 9.6754 115.987 0.16032

linear hypothesis. The following SAS code test the linear hypothesis (a)
H0: β0 = β1 = β2 = β3 = 0 versus H1: at least one βi 6= βj . (b) H0:
β1 = β2 versus H1: β1 6= β2, both at a level 0.05 (default).

proc reg data=pinetree alpha=0.05;

model MDBH=x1 x2 x3;

test intercept=0,

x1=0,

x2=0,

x3=0;

test x1=x2;

run;
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The first hypothesis test (a) is the multiple test for checking if all parameters
are zero and the observed value of the corresponding F test statistic is
2302.95 with the p-value < .0001. Thus, we cannot confirm H0. For the
second hypothesis test (b) the observed value of the corresponding F test
statistic is 14.69 with the p-value 0.0015. Since the p-value is less than the
significance level we cannot confirm H0 either.
Again, we use the Pine Trees Data to illustrate how to find the least squares
estimation under linear restrictions. The following SAS code compute the
least squares estimates under the linear restrictions β0 = 3.23 and β1 = β2.

proc reg data=pinetree;

model MDBH=x1 x2 x3;

restrict intercept=3.23, x1=x2/print;

run;

It is noted that the least squares estimates from the regression model with-
out any linear restrictions are b0 = 3.2357, b1 = 0.09741, b2 = −0.000169
and b3 = 3.4668. The least squares estimates with the linear restric-
tions β0 = 3.23 and β1 = β2 are b0 = 3.23, b1 = b2 = 0.00005527 and
b3 = 33.92506.

Problems

1. Using the matrix form of the simple linear regression to show the un-
biasness of the b. Also, calculate the covariance of b using the matrix
format of the simple linear regression.

2. Let X be a matrix of n ×m and X = (X1, X2), where X1 is n × k

matrix and X2 is n× (m− k) matrix. Show that

(a). The matrices X(X
′
X)−1X

′
and X1(X

′
1X1)−1X

′
1 are idempo-

tent.
(b). The matrix X(X

′
X)−1X

′ −X2(X
′
2X2)−1X

′
2 is idempotent.

(c). Find the rank of the matrix X(X
′
X)−1X

′ −X2(X
′
2X2)−1X

′
2.

3. The least squares estimators of the regression model Y = Xβ + ε are
linear function of the y-observations. When (X

′
X)−1 exists the least

squares estimators of β is b = (X
′
X)−1Xy. Let A be a constant

matrix. Using Var(Ay) = AVar(y)A
′

and Var(y) = σ2I to show that
Var(b) = σ2(X

′
X)−1.
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4. Show that the HAT matrix in linear regression model has the property
tr(H) = p where p is the total numbers of the model parameters.

5. Let hii be the ith diagonal elements of the HAT matrix. Prove that

(a). For a multiple regression model with a constant term hii ≥ 1/n.
(b). Show that hii ≤ 1. (Hint: Use the fact that the HAT matrix is

idempotent.)

6. Assume that the data given in Table 3.25 satisfy the model

yi = β0 + β1x1i + β2x2i + εi,

where εi’s are iid N(0, σ2).

Table 3.25 Data Set for Calculation of Confidence Interval on Regression Prediction

y 12.0 11.7 9.3 11.9 11.8 9.5 9.3 7.2 8.1 8.3 7.0 6.5 5.9

x1 3 4 5 6 7 8 9 10 11 12 13 14 15
x2 6 4 2 1 0 1 2 1 -1 0 -2 -1 -3

Data Source: Franklin A. Grabill, (1976), Theory and Application of the linear model.
p. 326.

(a). Find 80 percent, 90 percent, 95 percent, and 99 percent confidence
interval for y0, the mean of one future observation at x1 = 9.5 and
x2 = 2.5.

(b). Find a 90 percent confidence interval for ȳ0, the mean of six ob-
servations at x1 = 9.5 and x2 = 2.5.

7. Consider the general linear regression model y = Xβ + ε and the least
squares estimate b = (X

′
X)−1X

′
y. Show that

b = β + Rε,

where R = (X
′
X)−1X

′
.

8. A scientist collects experimental data on the radius of a propellant grain
(y) as a function of powder temperature, x1, extrusion rate, x2, and
die temperature, x3. The data is presented in Table 3.26.

(a). Consider the linear regression model

yi = β?
0 + β1(x1i − x̄1) + β2(x2i − x̄2) + β3(x3i − x̄3) + εi.

Write the vector y, the matrix X, and vector β in the model
y = Xβ + ε.
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Table 3.26 Propellant Grain Data

Grain Radius Powder Temp (x1) Extrusion Rate (x2) Die Temp (x3)

82 150 12 220
92 190 12 220
114 150 24 220
124 150 12 250
111 190 24 220
129 190 12 250
157 150 24 250
164 190 24 250

(b). Write out the normal equation (X
′
X)b = X

′
y. Comment on

what is special about the X
′
X matrix. What characteristic in

this experiment do you suppose to produce this special form of
X

′
X.

(c). Estimate the coefficients in the multiple linear regression model.
(d). Test the hypothesis H0 : Lβ1 = 0, H0 : β2 = 0 and make conclu-

sion.
(e). Compute 100(1−α)% confidence interval on E(y|x) at each of the

locations of x1, x2, and x3 described by the data points.
(f). Compute the HAT diagonals at eight data points and comment.
(g). Compute the variance inflation factors of the coefficients b1, b2,

and b3. Do you have any explanations as to why these measures
of damage due to collinearity give the results that they do?

9. For the data set given in Table 3.27

Table 3.27 Data Set for Testing Linear Hypothesis

y x1 x2

3.9 1.5 2.2
7.5 2.7 4.5
4.4 1.8 2.8
8.7 3.9 4.4
9.6 5.5 4.3
19.5 10.7 8.4
29.3 14.6 14.6
12.2 4.9 8.5

(a). Find the linear regression model.



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

Multiple Linear Regression 125

(b). Use the general linear hypothesis test to test

H0 : β1 = β2 = 0

and make your conclusion. Use full and restricted model residual
sums of squares.

10. Consider the general linear regression model y = Xβ + ε and the least
squares estimate b = (X

′
X)−1X

′
y. Show that

b = β + Rε,

where R = (X
′
X)−1X

′
.

11. In an experiment in the civil engineering department of Virginia Poly-
technic Institute and State University in 1988, a growth of certain type
of algae in water was observed as a function of time and dosage of
copper added into the water. The collected data are shown in Table
3.28.

(a). Consider the following regression model

yi = β0 + β1x1i + β2x2i + β12x1ix2i + εi

Estimate the coefficients of the model, using multiple linear re-
gression.

(b). Test H0 : β12 = 0 versus H1 : β12 6= 0. Do you have any reason to
change the model given in part (a).

(c). Show a partitioning of total degrees of freedom into those at-
tributed to regression, pure error, and lack of fit.

(d). Using the model you adopted in part (b), make a test for lack of
fit and draw conclusion.

(e). Plot residuals of your fitted model against x1 and x2 separately,
and comment.
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Table 3.28 Algae Data

y(unit of algae) x1(copper, mg) x2(days)

.3 1 5
.34 1 5
.2 2 5
.24 2 5
.24 2 5
.28 3 5
.2 3 5
.24 3 5
.02 4 5
.02 4 5
.06 4 5
0 5 5
0 5 5
0 5 5

.37 1 12

.36 1 12

.30 2 12

.31 2 12

.30 2 12

.30 3 12

.30 3 12

.30 3 12

.14 4 12

.14 4 12

.14 4 12

.14 5 12

.15 5 12

.15 5 12

.23 1 18

.23 1 18

.28 2 18

.27 2 18

.25 2 18
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Table 3.28 Cont’d

y(unit of algae) x1(mg copper) x2(days)

.27 3 18

.25 3 18

.25 3 18

.06 4 18

.10 4 18

.10 4 18

.02 5 18

.02 5 18

.02 5 18

.36 1 25

.36 1 25

.24 2 25

.27 2 25

.31 2 25

.26 3 25

.26 3 25

.28 3 25

.14 4 25

.11 4 25

.11 4 25

.04 5 25

.07 5 25

.05 5 25




