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Chapter 2

Simple Linear Regression

2.1 Introduction

The term “regression” and the methods for investigating the relationships
between two variables may date back to about 100 years ago. It was first
introduced by Francis Galton in 1908, the renowned British biologist, when
he was engaged in the study of heredity. One of his observations was that
the children of tall parents to be taller than average but not as tall as their
parents. This “regression toward mediocrity” gave these statistical meth-
ods their name. The term regression and its evolution primarily describe
statistical relations between variables. In particular, the simple regression
is the regression method to discuss the relationship between one dependent
variable (y) and one independent variable (x). The following classical data
set contains the information of parent’s height and children’s height.

Table 2.1 Parent’s Height and Children’s Height

Parent 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5

Children 65.8 66.7 67.2 67.6 68.2 68.9 69.5 69.9 72.2

The mean height is 68.44 for children and 68.5 for parents. The regression
line for the data of parents and children can be described as

child height = 21.52 + 0.69 parent height.

The simple linear regression model is typically stated in the form

y = β0 + β1x + ε,

where y is the dependent variable, β0 is the y intercept, β1 is the slope of
the simple linear regression line, x is the independent variable, and ε is the
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random error. The dependent variable is also called response variable, and
the independent variable is called explanatory or predictor variable. An
explanatory variable explains causal changes in the response variables. A
more general presentation of a regression model may be written as

y = E(y) + ε,

where E(y) is the mathematical expectation of the response variable. When
E(y) is a linear combination of exploratory variables x1, x2, · · · , xk the
regression is the linear regression. If k = 1 the regression is the simple linear
regression. If E(y) is a nonlinear function of x1, x2, · · · , xk the regression
is nonlinear. The classical assumptions on error term are E(ε) = 0 and a
constant variance Var(ε) = σ2. The typical experiment for the simple linear
regression is that we observe n pairs of data (x1, y1), (x2, y2), · · · , (xn, yn)
from a scientific experiment, and model in terms of the n pairs of the data
can be written as

yi = β0 + β1xi + εi for i = 1, 2, · · · , n,

with E(εi) = 0, a constant variance Var(εi) = σ2, and all εi’s are indepen-
dent. Note that the actual value of σ2 is usually unknown. The values of
xi’s are measured “exactly”, with no measurement error involved. After
model is specified and data are collected, the next step is to find “good”
estimates of β0 and β1 for the simple linear regression model that can best
describe the data came from a scientific experiment. We will derive these
estimates and discuss their statistical properties in the next section.

2.2 Least Squares Estimation

The least squares principle for the simple linear regression model is to
find the estimates b0 and b1 such that the sum of the squared distance
from actual response yi and predicted response ŷi = β0 + β1xi reaches the
minimum among all possible choices of regression coefficients β0 and β1.
i.e.,

(b0, b1) = arg min
(β0,β1)

n∑

i=1

[yi − (β0 + β1xi)]2.

The motivation behind the least squares method is to find parameter es-
timates by choosing the regression line that is the most “closest” line to
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all data points (xi, yi). Mathematically, the least squares estimates of the
simple linear regression are given by solving the following system:

∂

∂β0

n∑

i=1

[yi − (β0 + β1xi)]2 = 0 (2.1)

∂

∂β1

n∑

i=1

[yi − (β0 + β1xi)]2 = 0 (2.2)

Suppose that b0 and b1 are the solutions of the above system, we can de-
scribe the relationship between x and y by the regression line ŷ = b0 + b1x

which is called the fitted regression line by convention. It is more convenient
to solve for b0 and b1 using the centralized linear model:

yi = β∗0 + β1(xi − x̄) + εi,

where β0 = β∗0 − β1x̄. We need to solve for

∂

∂β∗0

n∑

i=1

[yi − (β∗0 + β1(xi − x̄))]2 = 0

∂

∂β1

n∑

i=1

[yi − (β∗0 + β1(xi − x̄))]2 = 0

Taking the partial derivatives with respect to β0 and β1 we have

n∑

i=1

[yi − (β∗0 + β1(xi − x̄))] = 0

n∑

i=1

[yi − (β∗0 + β1(xi − x̄))](xi − x̄) = 0

Note that
n∑

i=1

yi = nβ∗0 +
n∑

i=1

β1(xi − x̄) = nβ∗0 (2.3)

Therefore, we have β∗0 =
1
n

n∑

i=1

yi = ȳ. Substituting β∗0 by ȳ in (2.3) we

obtain

n∑

i=1

[yi − (ȳ + β1(xi − x̄))](xi − x̄) = 0.
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Denote b0 and b1 be the solutions of the system (2.1) and (2.2). Now it is
easy to see

b1 =
∑n

i=1(yi − ȳ)(xi − x̄)∑n
i=1(xi − x̄)2

=
Sxy

Sxx
(2.4)

and

b0 = b∗0 − b1x̄ = ȳ − b1x̄ (2.5)

The fitted value of the simple linear regression is defined as ŷi = b0 + b1xi.
The difference between yi and the fitted value ŷi, ei = yi− ŷi, is referred to
as the regression residual. Regression residuals play an important role in
the regression diagnosis on which we will have extensive discussions later.
Regression residuals can be computed from the observed responses yi’s
and the fitted values ŷi’s, therefore, residuals are observable. It should
be noted that the error term εi in the regression model is unobservable.
Thus, regression error is unobservable and regression residual is observable.
Regression error is the amount by which an observation differs from its
expected value; the latter is based on the whole population from which the
statistical unit was chosen randomly. The expected value, the average of
the entire population, is typically unobservable.

Example 2.1. If the average height of 21-year-old male is 5 feet 9 inches,
and one randomly chosen male is 5 feet 11 inches tall, then the “error” is 2
inches; if the randomly chosen man is 5 feet 7 inches tall, then the “error”
is −2 inches. It is as if the measurement of man’s height was an attempt
to measure the population average, so that any difference between man’s
height and average would be a measurement error.

A residual, on the other hand, is an observable estimate of unobservable
error. The simplest case involves a random sample of n men whose heights
are measured. The sample average is used as an estimate of the population
average. Then the difference between the height of each man in the sample
and the unobservable population average is an error, and the difference
between the height of each man in the sample and the observable sample
average is a residual. Since residuals are observable we can use residual
to estimate the unobservable model error. The detailed discussion will be
provided later.
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2.3 Statistical Properties of the Least Squares Estimation

In this section we discuss the statistical properties of the least squares
estimates for the simple linear regression. We first discuss statistical prop-
erties without the distributional assumption on the error term, but we shall
assume that E(εi) = 0, Var(εi) = σ2, and εi’s for i = 1, 2, · · · , n are inde-
pendent.

Theorem 2.1. The least squares estimator b0 is an unbiased estimate of
β0.

Proof.

Eb0 = E(ȳ − b1x̄) = E
( 1

n

n∑

i=1

yi

)
− Eb1x̄ =

1
n

n∑

i=1

Eyi − x̄Eb1

=
1
n

n∑

i=1

(β0 + β1xi)− β1x̄ =
1
n

n∑

i=1

β0 + β1
1
n

n∑

i=1

xi − β1x̄ = β0.

¤

Theorem 2.2. The least squares estimator b1 is an unbiased estimate of
β1.

Proof.

E(b1) = E
(Sxy

Sxx

)

=
1

Sxx
E

1
n

n∑

i=1

(yi − ȳ)(xi − x̄)

=
1

Sxx

1
n

n∑

i=1

(xi − x̄)Eyi

=
1

Sxx

1
n

n∑

i=1

(xi − x̄)(β0 + β1xi)

=
1

Sxx

1
n

n∑

i=1

(xi − x̄)β1xi

=
1

Sxx

1
n

n∑

i=1

(xi − x̄)β1(xi − x̄)

=
1

Sxx

1
n

n∑

i=1

(xi − x̄)2β1 =
Sxx

Sxx
β1 = β1

¤
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Theorem 2.3. Var(b1) =
σ2

nSxx
.

Proof.

Var(b1) = Var
(Sxy

Sxx

)

=
1

S2
xx

Var
( 1

n

n∑

i=1

(yi − ȳ)(xi − x̄)
)

=
1

S2
xx

Var
( 1

n

n∑

i=1

yi(xi − x̄)
)

=
1

S2
xx

1
n2

n∑

i=1

(xi − x̄)2Var(yi)

=
1

S2
xx

1
n2

n∑

i=1

(xi − x̄)2σ2 =
σ2

nSxx ¤

Theorem 2.4. The least squares estimator b1 and ȳ are uncorrelated. Un-
der the normality assumption of yi for i = 1, 2, · · · , n, b1 and ȳ are normally
distributed and independent.

Proof.

Cov(b1, ȳ) = Cov(
Sxy

Sxx
, ȳ)

=
1

Sxx
Cov(Sxy, ȳ)

=
1

nSxx
Cov

( n∑

i=1

(xi − x̄)(yi − ȳ), ȳ
)

=
1

nSxx
Cov

( n∑

i=1

(xi − x̄)yi, ȳ
)

=
1

n2Sxx
Cov

( n∑

i=1

(xi − x̄)yi,

n∑

i=1

yi

)

=
1

n2Sxx

n∑

i,j=1

(xi − x̄) Cov(yi, yj)

Note that Eεi = 0 and εi’s are independent we can write

Cov(yi, yj) = E[ (yi − Eyi)(yj − Eyj) ] = E(εi, εj) =

{σ2, if i = j

0, if i 6= j
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Thus, we conclude that

Cov(b1, ȳ) =
1

n2Sxx

n∑

i=1

(xi − x̄)σ2 = 0.

Recall that zero correlation is equivalent to the independence between two
normal variables. Thus, we conclude that b0 and ȳ are independent. ¤

Theorem 2.5. Var(b0) =
( 1

n
+

x̄2

nSxx

)
σ2.

Proof.

Var(b0) = Var(ȳ − b1x̄)

= Var(ȳ) + (x̄)2Var(b1)

=
σ2

n
+ x̄2 σ2

nSxx

=
( 1

n
+

x̄2

nSxx

)
σ2

¤

The properties 1 − 5, especially the variances of b0 and b1, are important
when we would like to draw statistical inference on the intercept and slope
of the simple linear regression.

Since the variances of least squares estimators b0 and b1 involve the variance
of the error term in the simple regression model. This error variance is
unknown to us. Therefore, we need to estimate it. Now we discuss how
to estimate the variance of the error term in the simple linear regression
model. Let yi be the observed response variable, and ŷi = b0 + b1xi, the
fitted value of the response. Both yi and ŷi are available to us. The true
error σi in the model is not observable and we would like to estimate it.
The quantity yi− ŷi is the empirical version of the error εi. This difference
is regression residual which plays an important role in regression model
diagnosis. We propose the following estimation of the error variance based
on ei:

s2 =
1

n− 2

n∑

i=1

(yi − ŷi)2

Note that in the denominator is n−2. This makes s2 an unbiased estimator
of the error variance σ2. The simple linear model has two parameters,
therefore, n − 2 can be viewed as n− number of parameters in simple
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linear regression model. We will see in later chapters that it is true for all
general linear models. In particular, in a multiple linear regression model
with p parameters the denominator should be n − p in order to construct
an unbiased estimator of the error variance σ2. Detailed discussion can be
found in later chapters. The unbiasness of estimator s2 for the simple linear
regression can be shown in the following derivations.

yi − ŷi = yi − b0 − b1xi = yi − (ȳ − b1x̄)− b1xi = (yi − ȳ)− b1(xi − x̄)

It follows that
n∑

i=1

(yi − ŷi) =
n∑

i=1

(yi − ȳ)− b1

n∑

i=1

(xi − x̄) = 0.

Note that (yi − ŷi)xi = [(yi − ȳ)− b1(xi − x̄)]xi, hence we have
n∑

i=1

(yi − ŷi)xi =
n∑

i=1

[(yi − ȳ)− b1(xi − x̄)]xi

=
n∑

i=1

[(yi − ȳ)− b1(xi − x̄)](xi − x̄)

=
n∑

i=1

(yi − ȳ)(xi − x̄)− b1

n∑

i=1

(xi − x̄)2

= n(Sxy − b1Sxx) = n
(
Sxy − Sxy

Sxx
Sxx

)
= 0

To show that s2 is an unbiased estimate of the error variance, first we note
that

(yi − ŷi)2 = [(yi − ȳ)− b1(xi − x̄)]2,

therefore,
n∑

i=1

(yi − ŷi)2 =
n∑

i=1

[(yi − ȳ)− b1(xi − x̄)]2

=
n∑

i=1

(yi − ȳ)2 − 2b1

n∑

i=1

(xi − x̄)(yi − ȳi) + b2
1

n∑

i=1

(xi − x̄)2

=
n∑

i=1

(yi − ȳ)2 − 2nb1Sxy + nb2
1Sxx

=
n∑

i=1

(yi − ȳ)2 − 2n
Sxy

Sxx
Sxy + n

S2
xy

S2
xx

Sxx

=
n∑

i=1

(yi − ȳ)2 − n
S2

xy

Sxx
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Since

(yi − ȳ)2 = [β1(xi − x̄) + (εi − ε̄)]2

and

(yi − ȳ)2 = β2
1(xi − x̄)2 + (εi − ε̄)2 + 2β1(xi − x̄)(εi − ε̄),

therefore,

E(yi − ȳ)2 = β2
1(xi − x̄)2 + E(εi − ε̄)2 = β2

1(xi − x̄)2 +
n− 1

n
σ2,

and
n∑

i=1

E(yi − ȳ)2 = nβ2
1Sxx +

n∑

i=1

n− 1
n

σ2 = nβ2
1Sxx + (n− 1)σ2.

Furthermore, we have

E(Sxy) = E
( 1

n

n∑

i=1

(xi − x̄)(yi − ȳ)
)

=
1
n

E

n∑

i=1

(xi − x̄)yi

=
1
n

n∑

i=1

(xi − x̄)Eyi

=
1
n

n∑

i=1

(xi − x̄)(β0 + β1xi)

=
1
n

β1

n∑

i=1

(xi − x̄)xi

=
1
n

β1

n∑

i=1

(xi − x̄)2 = β1Sxx

and

Var
(
Sxy

)
= Var

( 1
n

n∑

i=1

(xi − x̄)yi

)
=

1
n2

n∑

i=1

(xi − x̄)2Var(yi) =
1
n

Sxxσ2

Thus, we can write

E(S2
xy) = Var(Sxy) + [E(Sxy)]2 =

1
n

Sxxσ2 + β2
1S2

xx

and

E
(nS2

xy

Sxx

)
= σ2 + nβ2

1Sxx.
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Finally, E(σ̂2) is given by:

E

n∑

i=1

(yi − ŷ)2 = nβ2
1Sxx + (n− 1)σ2 − nβ2

1Sxx − σ2 = (n− 2)σ2.

In other words, we prove that

E(s2) = E

(
1

n− 2

n∑

i=1

(yi − ŷ)2
)

= σ2.

Thus, s2, the estimation of the error variance, is an unbiased estimator
of the error variance σ2 in the simple linear regression. Another view of
choosing n − 2 is that in the simple linear regression model there are n

observations and two restrictions on these observations:

(1)
n∑

i=1

(yi − ŷ) = 0,

(2)
n∑

i=1

(yi − ŷ)xi = 0.

Hence the error variance estimation has n− 2 degrees of freedom which is
also the number of total observations − total number of the parameters in
the model. We will see similar feature in the multiple linear regression.

2.4 Maximum Likelihood Estimation

The maximum likelihood estimates of the simple linear regression can be
developed if we assume that the dependent variable yi has a normal distri-
bution: yi ∼ N(β0 + β1xi, σ

2). The likelihood function for (y1, y2, · · · , yn)
is given by

L =
n∏

i=1

f(yi) =
1

(2π)n/2σn
e(−1/2σ2)

∑n
i=1(yi−β0−β1xi)

2
.

The estimators of β0 and β1 that maximize the likelihood function L are
equivalent to the estimators that minimize the exponential part of the like-
lihood function, which yields the same estimators as the least squares esti-
mators of the linear regression. Thus, under the normality assumption of
the error term the MLEs of β0 and β1 and the least squares estimators of
β0 and β1 are exactly the same.
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After we obtain b1 and b0, the MLEs of the parameters β0 and b1, we can
compute the fitted value ŷi, and the likelihood function in terms of the
fitted values.

L =
n∏

i=1

f(yi) =
1

(2π)n/2σn
e(−1/2σ2)

∑n
i=1(yi−ŷi)

2

We then take the partial derivative with respect to σ2 in the log likelihood
function log(L) and set it to zero:

∂ log(L)
∂σ2

= − n

2σ2
+

1
2σ4

n∑

i=1

(yi − ŷi)2 = 0

The MLE of σ2 is σ̂2 =
1
n

n∑

i=1

(yi − ŷi)2. Note that it is a biased estimate

of σ2, since we know that s2 =
1

n− 2

n∑

i=1

(yi − ŷi)2 is an unbiased estimate

of the error variance σ2.
n

n− 2
σ̂2 is an unbiased estimate of σ2. Note also

that the σ̂2 is an asymptotically unbiased estimate of σ2, which coincides
with the classical theory of MLE.

2.5 Confidence Interval on Regression Mean and Regres-
sion Prediction

Regression models are often constructed based on certain conditions that
must be verified for the model to fit the data well, and to be able to predict
the response for a given regressor as accurate as possible. One of the main
objectives of regression analysis is to use the fitted regression model to
make prediction. Regression prediction is the calculated response value
from the fitted regression model at data point which is not used in the
model fitting. Confidence interval of the regression prediction provides a
way of assessing the quality of prediction. Often the following regression
prediction confidence intervals are of interest:

• A confidence interval for a single pint on the regression line.
• A confidence interval for a single future value of y corresponding to a

chosen value of x.
• A confidence region for the regression line as a whole.



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

20 Linear Regression Analysis: Theory and Computing

If a particular value of predictor variable is of special importance, a con-
fidence interval for the corresponding response variable y at particular re-
gressor x may be of interest.

A confidence interval of interest can be used to evaluate the accuracy of
a single future value of y at a chosen value of regressor x. Confidence
interval estimator for a future value of y provides confidence interval for an
estimated value y at x with a desirable confidence level 1− α.

It is of interest to compare the above two different kinds of confidence
interval. The second kind has larger confidence interval which reflects the
less accuracy resulting from the estimation of a single future value of y

rather than the mean value computed for the first kind confidence interval.

When the entire regression line is of interest, a confidence region can provide
simultaneous statements about estimates of y for a number of values of the
predictor variable x. i.e., for a set of values of the regressor the 100(1− α)
percent of the corresponding response values will be in this interval.

To discuss the confidence interval for regression line we consider the fitted
value of the regression line at x = x0, which is ŷ(x0) = b0 + b1x0 and the
mean value at x = x0 is E(ŷ|x0) = β0 + β1x0. Note that b1 is independent
of ȳ we have

Var(ŷ(x0)) = Var(b0 + b1x0)

= Var(ȳ − b1(x0 − x̄))

= Var(ȳ) + (x0 − x̄)2Var(b1)

=
1
n

σ2 + (x0 − x̄)2
1

Sxx
σ2

= σ2
[ 1
n

+
(x0 − x̄)2

Sxx

]

Replacing σ by s, the standard error of the regression prediction at x0 is
given by

sŷ(x0) = s

√
1
n

+
(x0 − x̄)2

Sxx

If ε ∼ N(0, σ2) the (1 − α)100% of confidence interval on E(ŷ|x0) = β0 +
β1x0 can be written as
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ŷ(x0)± tα/2,n−2 s

√
1
n

+
(x0 − x̄)2

Sxx
.

We now discuss confidence interval on the regression prediction. Denoting
the regression prediction at x0 by y0 and assuming that y0 is independent
of ŷ(x0), where y(x0) = b0 + b1x0, and E(y − ŷ(x0)) = 0, we have

Var
(
y0 − ŷ(x0)

)
= σ2 + σ2

[ 1
n

+
(x0 − x̄)2

Sxx

]
= σ2

[
1 +

1
n

+
(x0 − x̄)2

Sxx

]
.

Under the normality assumption of the error term

y0 − ŷ(x0)

σ
√

1 + 1
n + (x0−x̄)2

Sxx

∼ N(0, 1).

Substituting σ with s we have

y0 − ŷ(x0)

s
√

1 + 1
n + (x0−x̄)2

Sxx

∼ tn−2.

Thus the (1 − α)100% confidence interval on regression prediction y0 can
be expressed as

ŷ(x0)± tα/2,n−2 s

√
1 +

1
n

+
(x0 − x̄)2

Sxx
.

2.6 Statistical Inference on Regression Parameters

We start with the discussions on the total variance of regression model
which plays an important role in the regression analysis. In order to parti-

tion the total variance
n∑

i=1

(yi − ȳ)2, we consider the fitted regression equa-

tion ŷi = b0 + b1xi, where b0 = ȳ − b1x̄ and b1 = Sxy/Sxx. We can write

¯̂y =
1
n

n∑
i=1

ŷi =
1
n

n∑
i=1

[(ȳ − b1x̄) + b1xi] =
1
n

n∑
i=1

[ȳ + b1(xi − x̄)] = ȳ.
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For the regression response yi, the total variance is
1
n

n∑

i=1

(yi − ȳ)2. Note

that the product term is zero and the total variance can be partitioned into
two parts:

1
n

n∑

i=1

(yi − ȳ)2 =
1
n

n∑

i=1

[(yi − ŷ)2 + (ŷi − ȳ)]2

=
1
n

n∑

i=1

(ŷi − ȳ)2 +
1
n

n∑

i=1

(yi − ŷ)2 = SSReg + SSRes

= Variance explained by regression + Variance unexplained

It can be shown that the product term in the partition of variance is zero:

n∑

i=1

(ŷi − ȳ)(yi − ŷi) (use the fact that
n∑

i=1

(yi − ŷi) = 0)

=
n∑

i=1

ŷi(yi − ŷi) =
n∑

i=1

[
b0 + b1(xi − x̄)

]
(yi − ŷ)

= b1

n∑

i=1

xi(yi − ŷi) = b1

n∑

i=1

xi[yi − b0 − b1(xi − x̄)]

= b1

n∑

i=1

xi

[
(yi − ȳ)− b1(xi − x̄)

]

= b1

[ n∑

i=1

(xi − x̄)(yi − ȳ)− b1

n∑

i=1

(xi − x̄)2
]

= b1[Sxy − b1Sxx] = b1[Sxy − (Sxy/Sxx)Sxx] = 0

The degrees of freedom for SSReg and SSRes are displayed in Table 2.2.

Table 2.2 Degrees of Freedom in Parti-
tion of Total Variance

SSTotal = SSReg + SSRes

n-1 = 1 + n-2

To test the hypothesis H0 : β1 = 0 versus H1 : β1 6= 0 it is needed
to assume that εi ∼ N(0, σ2). Table 2.3 lists the distributions of SSReg,
SSRes and SSTotal under the hypothesis H0. The test statistic is given by
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F =
SSReg

SSRes/n− 2
∼ F1, n−2,

which is a one-sided, upper-tailed F test. Table 2.4 is a typical regression
Analysis of Variance (ANOVA) table.

Table 2.3 Distributions of Par-
tition of Total Variance

SS df Distribution

SSReg 1 σ2χ2
1

SSRes n-2 σ2χ2
n−2

SSTotal n-1 σ2χ2
n−1

Table 2.4 ANOVA Table 1

Source SS df MS F

Regression SSReg 1 SSReg/1 F =
MSReg

s2

Residual SSRes n-2 s2

Total SSTotal n-1

To test for regression slope β1, it is noted that b1 follows the normal distri-
bution

b1 ∼ N
(
β1,

σ2

SSxx

)
and (b1 − β1

s

)√
Sxx ∼ tn−2,

which can be used to test H0 : β1 = β10 versus H1 : β1 �= β10. Similar ap-
proach can be used to test for the regression intercept. Under the normality
assumption of the error term

b0 ∼ N
[
β0, σ

2(
1
n

+
x̄2

Sxx
)
]
.
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Therefore, we can use the following t test statistic to test H0 : β0 = β00

versus H1 : β0 6= β00.

t =
b0 − β0

s
√

1/n + (x̄2/Sxx)
∼ tn−2

It is straightforward to use the distributions of b0 and b1 to obtain the
(1− α)100% confidence intervals of β0 and β1:

b0 ± tα/2,n−2 s

√
1
n

+
x̄2

Sxx
,

and

b1 ± tα/2,n−2 s

√
1

Sxx
.

Suppose that the regression line pass through (0, β0). i.e., the y intercept
is a known constant β0. The model is given by yi = β0 + β1xi + εi with
known constant β0. Using the least squares principle we can estimate β1:

b1 =
∑

xiyi∑
x2

i

.

Correspondingly, the following test statistic can be used to test for H0 :
β1 = β10 versus H1 : β1 6= β10. Under the normality assumption on εi

t =
b1 − β10

s

√√√√
n∑

i=1

x2
i ∼ tn−1

Note that we only have one parameter for the fixed y-intercept regression
model and the t test statistic has n−1 degrees of freedom, which is different
from the simple linear model with 2 parameters.

The quantity R2, defined as below, is a measurement of regression fit:

R2 =
SSReg

SSTotal
=

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

= 1− SSRes

SSTotal

Note that 0 ≤ R2 ≤ 1 and it represents the proportion of total variation
explained by regression model.
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Quantity CV =
s

ȳ
×100 is called the coefficient of variation, which is also

a measurement of quality of fit and represents the spread of noise around
the regression line. The values of R2 and CV can be found from Table 2.7,
an ANOVA table generated by SAS procedure REG.

We now discuss simultaneous inference on the simple linear regression. Note
that so far we have discussed statistical inference on β0 and β1 individually.
The individual test means that when we test H0 : β0 = β00 we only test
this H0 regardless of the values of β1. Likewise, when we test H0 : β1 = β10

we only test H0 regardless of the values of β0. If we would like to test
whether or not a regression line falls into certain region we need to test the
multiple hypothesis: H0 : β0 = β00, β1 = β10 simultaneously. This falls into
the scope of multiple inference. For the multiple inference on β0 and β1 we
notice that

(
b0 − β0, b1 − β1

)(
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x2

i

)(
b0 − β0

b1 − β1

)

∼ 2s2F2,n−2.

Thus, the (1− α)100% confidence region of the β0 and β1 is given by
(
b0 − β0, b1 − β1

)(
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x2

i

)(
b0 − β0

b1 − β1

)

≤ 2s2Fα,2,n−2,

where Fα,2,n−2 is the upper tail of the αth percentage point of the F-
distribution. Note that this confidence region is an ellipse.

2.7 Residual Analysis and Model Diagnosis

One way to check performance of a regression model is through regression
residual, i.e., ei = yi − ŷi. For the simple linear regression a scatter plot
of ei against xi provides a good graphic diagnosis for the regression model.
An evenly distributed residuals around mean zero is an indication of a good
regression model fit.

We now discuss the characteristics of regression residuals if a regression
model is misspecified. Suppose that the correct model should take the
quadratic form:
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yi = β0 + β1(xi − x̄) + β2x
2
i + εi

with E(εi) = 0. Assume that the incorrectly specified linear regression
model takes the following form:

yi = β0 + β1(xi − x̄) + ε∗i .

Then ε∗i = β2x
2
i + ε∗i which is unknown to the analyst. Now, the mean

of the error for the simple linear regression is not zero at all and it is a
function of xi. From the quadratic model we have

b0 = ȳ = β0 + β2x̄
2 + ε̄

and

b1 =
Sxy

Sxx
=
∑n

i=1(xi − x̄)(β0 + β1(xi − x̄) + β2x
2
i + εi)

Sxx

b1 = β1 + β2

∑n
i=1(xi − x̄)x2

i

Sxx
+
∑n

i=1(xi − x̄)εi

Sxx
.

It is easy to know that

E(b0) = β0 + β2x̄
2

and

E(b1) = β1 + β2

∑n
i=1(xi − x̄)x2

i

Sxx
.

Therefore, the estimators b0 and b1 are biased estimates of β0 and β1.
Suppose that we fit the linear regression model and the fitted values are
given by ŷi = b0 + b1(xi − x̄), the expected regression residual is given by

E(ei) = E(yi − ŷi) =
[
β0 + β1(xi − x̄) + β2x

2
i

]− [E(b0) + E(b1)(xi − x̄)
]

=
[
β0 + β1(xi − x̄) + β2x

2
i

]− [β0 + β2x̄
2
]

−
[
β1 + β2

∑n
i=1(xi − x̄)x2

i

Sxx

]
(xi − x̄)

= β2

[
(x2

i − x̄2)−
∑n

i=1(xi − x̄)x2
i

Sxx

]
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If β2 = 0 then the fitted model is correct and E(yi − ŷi) = 0. Otherwise,
the expected value of residual takes the quadratic form of xi’s. As a re-
sult, the plot of residuals against xi’s should have a curvature of quadratic
appearance.

Statistical inference on regression model is based on the normality assump-
tion of the error term. The least squares estimators and the MLEs of the
regression parameters are exactly identical only under the normality as-
sumption of the error term. Now, question is how to check the normality
of the error term? Consider the residual yi − ŷi: we have E(yi − ŷi) = 0
and

Var(yi − ŷi) = V ar(yi) + Var(ŷi)− 2Cov(yi, ŷi)

= σ2 + σ2
[ 1
n

+
(xi − x̄)2

Sxx

]
− 2Cov(yi, ȳ + b1(xi − x̄))

We calculate the last term

Cov(yi, ȳ + b1(xi − x̄)) = Cov(yi, ȳ) + (xi − x̄)Cov(yi, b1)

=
σ2

n
+ (xi − x̄)Cov(yi, Sxy/Sxx)

=
σ2

n
+ (xi − x̄)

1
Sxx

Cov
(
yi,

n∑

i=1

(xi − x̄)(yi − ȳ)
)

=
σ2

n
+ (xi − x̄)

1
Sxx

Cov
(
yi,

n∑

i=1

(xi − x̄)yi

)
=

σ2

n
+

(xi − x̄)2

Sxx
σ2

Thus, the variance of the residual is given by

Var(ei) = V ar(yi − ŷi) = σ2
[
1−

( 1
n

+
(xi − x̄)2

Sxx

)]
,

which can be estimated by

sei = s
[
1−

( 1
n

+
(xi − x̄)2

Sxx

)]
.

If the error term in the simple linear regression is correctly specified, i.e.,
error is normally distributed, the standardized residuals should behave like
the standard normal random variable. Therefore, the quantile of the stan-
dardized residuals in the simple linear regression will be similar to the
quantile of the standardized normal random variable. Thus, the plot of the
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quantile of the standardized residuals versus the normal quantile should
follow a straight line in the first quadrant if the normality assumption on
the error term is correct. It is usually called the normal plot and has been
used as a useful tool for checking the normality of the error term in simple
linear regression. Specifically, we can

(1) Plot ordered residual
yi − ŷi

s
against the normal quantile Z

(
i−0.375
n+0.25

)

(2) Plot ordered standardized residual
yi − ŷi

sei

against the normal quantile

Z
(

i−0.375
n+0.25

)

2.8 Example

The SAS procedure REG can be used to perform regression analysis. It is
convenient and efficient. The REG procedure provides the most popular
parameter estimation, residual analysis, regression diagnosis. We present
the example of regression analysis of the density and stiffness data using
SAS.

data example1;

input density stiffness @@;

datalines;

9.5 14814 8.4 17502 9.8 14007 11.0 19443 8.3 7573

9.9 14191 8.6 9714 6.4 8076 7.0 5304 8.2 10728

17.4 43243 15.0 25319 15.2 28028 16.4 41792 16.7 49499

15.4 25312 15.0 26222 14.5 22148 14.8 26751 13.6 18036

25.6 96305 23.4 104170 24.4 72594 23.3 49512 19.5 32207

21.2 48218 22.8 70453 21.7 47661 19.8 38138 21.3 53045

;

proc reg data=example1 outest=out1 tableout;

model stiffness=density/all;

run;

ods rtf file="C:\Example1_out1.rtf";

proc print data=out1;

title "Parameter Estimates and CIs";

run;

ods rtf close;
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*Trace ODS to find out the names of the output data sets;

ods trace on;

ods show;

ods rtf file="C:\Example1_out2.rtf";

proc reg data=Example1 alpha=0.05;

model stiffness=density;

ods select Reg.MODEL1.Fit.stiffness.ANOVA;

ods select Reg.MODEL1.Fit.stiffness.FitStatistics;

ods select Reg.MODEL1.Fit.stiffness.ParameterEstimates;

ods rtf close;

proc reg data=Example1;

model stiffness=density;

output out=out3 p=yhat r=yresid student=sresid;

run;

ods rtf file="C:\Example1_out3.rtf";

proc print data=out3;

title "Predicted Values and Residuals";

run;

ods rtf close;

The above SAS code generate the following output tables 2.5, 2.6, 2.7, 2.8,
and 2.9.

Table 2.5 Confidence Intervals on Parameter Estimates

Obs MODEL TYPE DEPVAR RMSE Intercept density

1 Model1 Parms stiffness 11622.44 -25433.74 3884.98
2 Model1 Stderr stiffness 11622.44 6104.70 370.01
3 Model1 T stiffness 11622.44 -4.17 10.50
4 Model1 P-value stiffness 11622.44 0.00 0.00
5 Model1 L95B stiffness 11622.44 -37938.66 3127.05
6 Model1 U95B stiffness 11622.44 -12928.82 4642.91

Data Source: density and stiffness data

The following is an example of SAS program for computing the confi-
dence band of regression mean, the confidence band for regression predic-
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Table 2.6 ANOVA Table 2

Sum of Mean
Source DF Squares Square F Value Pr >F

Model 1 14891739363 14891739363 110.24 <.0001
Error 28 3782270481 135081089
Corrected Total 29 18674009844

Data Source: density and stiffness data

Table 2.7 Regression Table

Root MSE 11622.00 R-Square 0.7975
Dependent Mean 34667.00 Adj R-Sq 0.7902
Coeff Var 33.53

Data Source: density and stiffness data

Table 2.8 Parameter Estimates of Simple Linear Regression

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -25434.00 6104.70 -4.17 0.0003
density 1 3884.98 370.01 10.50 < .0001

Data Source: density and stiffness data

tion, and probability plot (QQ-plot and PP-plot).

data Example2;

input density stiffness @@;

datalines;

9.5 14814 8.4 17502 9.8 14007 11 19443 8.3 7573

9.9 14191 8.6 9714 6.4 8076 7 5304 8.2 10728

17.4 43243 15 25319 15.2 28028 16.4 41792 16.7 49499

15.4 25312 15 26222 14.5 22148 14.8 26751 13.6 18036

25.6 96305 23.4 104170 24.4 72594 23.3 49512 19.5 32207

21.2 48218 22.8 70453 21.7 47661 19.8 38138 21.3 53045

;

across=1 cborder=red offset=(0,0)

shape=symbol(3,1) label=none value=(height=1);

symbol1 c=black value=- h=1;

symbol2 c=red;
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Table 2.9 Table for Fitted Values and Residuals

Obs density stiffness yhat yresid

1 9.5 14814 11473.53 3340.47
2 8.4 17502 7200.06 10301.94
3 9.8 14007 12639.02 1367.98
4 11 19443 17300.99 2142.01
5 8.3 7573 6811.56 761.44
6 9.9 14191 13027.52 1163.48
7 8.6 9714 7977.05 1736.95
8 6.4 8076 -569.90 8645.90
9 7.0 5304 1761.09 3542.91

10 8.2 10728 6423.06 4304.94
11 17.4 43243 42164.84 1078.16
12 15.0 25319 32840.89 -7521.89
13 15.2 28028 33617.89 -5589.89
14 16.4 41792 38279.86 3512.14
15 16.7 49499 39445.35 10053.65
16 15.4 25312 34394.89 -9082.89
17 15.0 26222 32840.89 -6618.89
18 14.5 22148 30898.41 -8750.41
19 14.8 26751 32063.90 -5312.90
20 13.6 18036 27401.93 -9365.93
21 25.6 96305 74021.64 22283.36
22 23.4 104170 65474.69 38695.31
23 24.4 72594 69359.67 3234.33
24 23.3 49512 65086.19 -15574.19
25 19.5 32207 50323.28 -18116.28
26 21.2 48218 56927.74 -8709.74
27 22.8 70453 63143.70 7309.30
28 21.7 47661 58870.23 -11209.23
29 19.8 38138 51488.78 -13350.78
30 21.3 53045 57316.24 -4271.24

Data Source: density and stiffness data

symbol3 c=blue;

symbol4 c=blue;

proc reg data=Example2;

model density=stiffness /noprint p r;

output out=out p=pred r=resid LCL=lowpred

UCL=uppred LCLM=lowreg UCLM=upreg;

run;

ods rtf file="C:\Example2.rtf";

ods graphics on;

title "PP Plot";



April 29, 2009 11:50 World Scientific Book - 9in x 6in Regression˙master

32 Linear Regression Analysis: Theory and Computing

plot npp.*r./caxis=red ctext=blue nostat cframe=ligr;

run;

title "QQ Plot";

plot r.*nqq. /noline mse

caxis=red ctext=blue cframe=ligr;

run;

*Compute confidence band of regression mean;

plot density*stiffness/conf caxis=red ctext=blue

cframe=ligr legend=legend1;

run;

*Compute confidence band of regression prediction;

plot density*stiffness/pred caxis=red ctext=blue

cframe=ligr legend=legend1;

run;

ods graphics off;

ods rtf close;

quit;

The regression scatterplot, residual plot, 95% confidence bands for re-
gression mean and prediction are presented in Fig. 2.1.
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Fig. 2.1 (a) Regression Line and Scatter Plot. (b) Residual Plot, (c) 95% Confidence
Band for Regression Mean. (d) 95% Confidence Band for Regression Prediction.

The Q-Q plot for regression model density=β0 +β1 stiffness is presented in
Fig. 2.2.
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Fig. 2.2 Q-Q Plot for Regression Model density=β0 + β1 stiffness + ε.
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Problems

1. Consider a set of data (xi, yi), i = 1, 2, · · · , n, and the following two
regression models:

yi = β0 + β1xi + ε, (i = 1, 2, · · · , n), Model A

yi = γ0 + γ1xi + γ2x
2
i + ε, (i = 1, 2, · · · , n), Model B

Suppose both models are fitted to the same data. Show that

SSRes, A ≥ SSRes, B

If more higher order terms are added into the above Model B, i.e.,

yi = γ0 + γ1xi + γ2x
2
i + γ3x

3
i + · · ·+ γkxk

i + ε, (i = 1, 2, · · · , n),

show that the inequality SSRes, A ≥ SSRes, B still holds.
2. Consider the zero intercept model given by

yi = β1xi + εi, (i = 1, 2, · · · , n)

where the εi’s are independent normal variables with constant variance
σ2. Show that the 100(1−α)% confidence interval on E(y|x0) is given
by

b1x0 + tα/2, n−1s

√
x2

0∑n
i=1 x2

i

where s =

√√√√
n∑

i=1

(yi − b1xi)/(n− 1) and b1 =
∑n

i=1 yixi∑n
i=1 x2

i

.

3. Derive and discuss the (1−α)100% confidence interval on the slope β1

for the simple linear model with zero intercept.
4. Consider the fixed zero intercept regression model

yi = β1xi + εi, (i = 1, 2, · · · , n)

The appropriate estimator of σ2 is given by

s2 =
n∑

i=1

(yi − ŷi)2

n− 1

Show that s2 is an unbiased estimator of σ2.
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Table 2.10 Data for Two Parallel
Regression Lines

x y

x1 y1

.

..
.
..

xn1 yn1

xn1+1 yn1+1

..

.
..
.

xn1+n2 yn1+n2

5. Consider a situation in which the regression data set is divided into two
parts as shown in Table 2.10.
The regression model is given by

yi =





β
(1)
0 + β1xi + εi, i = 1, 2, · · · , n1;

β
(2)
0 + β1xi + εi, i = n1 + 1, · · · , n1 + n2.

In other words, there are two regression lines with common slope. Using
the centered regression model

yi =





β
(1∗)
0 + β1(xi − x̄1) + εi, i = 1, 2, · · · , n1;

β
(2∗)
0 + β1(xi − x̄2) + εi, i = n1 + 1, · · · , n1 + n2,

where x̄1 =
∑n1

i=1 xi/n1 and x̄2 =
∑n1+n2

i=n1+1 xi/n2. Show that the least
squares estimate of β1 is given by

b1 =

∑n1
i=1(xi − x̄1)yi +

∑n1+n2
i=n1+1(xi − x̄2)yi∑n1

i=1(xi − x̄1)2 +
∑n1+n2

i=n1+1(xi − x̄2)2

6. Consider two simple linear models

Y1j = α1 + β1x1j + ε1j , j = 1, 2, · · · , n1

and

Y2j = α2 + β2x2j + ε2j , j = 1, 2, · · · , n2

Assume that β1 6= β2 the above two simple linear models intersect. Let
x0 be the point on the x-axis at which the two linear models intersect.
Also assume that εij are independent normal variable with a variance
σ2. Show that
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(a). x0 =
α1 − α2

β1 − β2

(b). Find the maximum likelihood estimates (MLE) of x0 using the
least squares estimators α̂1, α̂2, β̂1, and β̂2.

(c). Show that the distribution of Z, where

Z = (α̂1 − α̂2) + x0(β̂1 − β̂2),

is the normal distribution with mean 0 and variance A2σ2, where

A2 =

∑
x2

1j − 2x0

∑
x1j + x2

0n1

n1

∑
(x1j − x̄1)2

+

∑
x2

2j − 2x0

∑
x2j + x2

0n2

n2

∑
(x2j − x̄2)2

.

(d). Show that U = Nσ̂2/σ2 is distributed as χ2(N), where N =
n1 + n2 − 4.

(e). Show that U and Z are independent.

(f). Show that W = Z2/A2σ̂2 has the F distribution with degrees of
freedom 1 and N .

(g). Let S2
1 =

∑
(x1j − x̄1)2 and S2

2 =
∑

(x2j − x̄2)2, show that the
solution of the following quadratic equation about x0, q(x0) =
ax2

0 + 2bx0 + c = 0,[
(β̂1 − β̂2)2 −

( 1
S2

1

+
1
S2

2

)
σ̂2Fα,1,N

]
x2

0

+ 2
[
(α̂1 − α̂2)(β̂1 − β̂2) +

( x̄1

S2
1

+
x̄2

S2
2

)
σ̂2Fα,1,N

]
x0

+
[
(α̂1 − α̂2)2 −

(∑ x2
1j

n1S2
1

+

∑
x2

2j

n2S2
2

)
σ̂2Fα,1,N

]
= 0.

Show that if a ≥ 0 and b2− ac ≥ 0, then 1−α confidence interval
on x0 is

−b−√b2 − ac

a
≤ x0 ≤ −b +

√
b2 − ac

a
.

7. Observations on the yield of a chemical reaction taken at various tem-
peratures were recorded in Table 2.11:

(a). Fit a simple linear regression and estimate β0 and β1 using the
least squares method.

(b). Compute 95% confidence intervals on E(y|x) at 4 levels of temper-
atures in the data. Plot the upper and lower confidence intervals
around the regression line.
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Table 2.11 Chemical Reaction Data

temperature (C0) yield of chemical reaction (%)

150 77.4
150 77.4
150 77.4
150 77.4
150 77.4
150 77.4
150 77.4
150 77.4
150 77.4
150 77.4
150 77.4
150 77.4

Data Source: Raymond H. Myers, Classical and Mod-
ern Regression Analysis With Applications, P77.

(c). Plot a 95% confidence band on the regression line. Plot on the
same graph for part (b) and comment on it.

8. The study “Development of LIFETEST, a Dynamic Technique to As-
sess Individual Capability to Lift Material” was conducted in Virginia
Polytechnic Institute and State University in 1982 to determine if cer-
tain static arm strength measures have influence on the “dynamic lift”
characteristics of individual. 25 individuals were subjected to strength
tests and then were asked to perform a weight-lifting test in which
weight was dynamically lifted overhead. The data are in Table 2.12:

(a). Find the linear regression line using the least squares method.
(b). Define the joint hypothesis H0 : β0 = 0, β1 = 2.2. Test this

hypothesis problem using a 95% joint confidence region and β0

and β1 to draw your conclusion.
(c). Calculate the studentized residuals for the regression model. Plot

the studentized residuals against x and comment on the plot.
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Table 2.12 Weight-lifting Test Data

Individual Arm Strength (x) Dynamic Lift (y)

1 17.3 71.4
2 19.5 48.3
3 19.5 88.3
4 19.7 75.0
5 22.9 91.7
6 23.1 100.0
7 26.4 73.3
8 26.8 65.0
9 27.6 75.0
10 28.1 88.3
11 28.1 68.3
12 28.7 96.7
13 29.0 76.7
14 29.6 78.3
15 29.9 60.0
16 29.9 71.7
17 30.3 85.0
18 31.3 85.0
19 36.0 88.3
20 39.5 100.0
21 40.4 100.0
22 44.3 100.0
23 44.6 91.7
24 50.4 100.0
25 55.9 71.7

Data Source: Raymond H. Myers, Classical and Mod-
ern Regression Analysis With Applications, P76.




